Direct Divergence Approximation between Probability Distributions and Its Applications in Machine Learning

Masashi Sugiyama*, Song Liu, and Marthinus Christoffel du Plessis
Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan
sugi@cs.titech.ac.jp, song@sg.cs.titech.ac.jp, christo@sg.cs.titech.ac.jp

Masao Yamanaka
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
yamanaka@sp.dis.titech.ac.jp

Makoto Yamada
NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
yamada.makoto@lab.ntt.co.jp

Taiji Suzuki
Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
s-taiji@stat.t.u-tokyo.ac.jp

Takafumi Kanamori
Department of Computer Science and Mathematical Informatics, Nagoya University, Nagoya, Japan
kanamori@is.nagoya-u.ac.jp

Abstract
Approximating a divergence between two probability distributions from their samples is a fundamental challenge in statistics, information theory, and machine learning. A divergence approximator can be used for various purposes, such as two-sample homogeneity testing, change-point detection, and class-balance estimation. Furthermore, an approximator of a divergence between the joint distribution and the product of marginals can be used for independence testing, which has a wide range of applications, including feature selection and extraction, clustering, object matching, independent component analysis, and causal direction estimation. In this paper, we review recent advances in divergence approximation. Our emphasis is that directly approximating the divergence without estimating probability distributions is more sensible than a naive two-step approach of first estimating probability distributions and then approximating the divergence. Furthermore, despite the overwhelming popularity of the Kullback-Leibler divergence as a divergence measure, we argue that alternatives such as the Pearson divergence, the relative Pearson divergence, and the L^2-distance are more useful in practice because of their computationally efficient approximability, high numerical stability, and superior robustness against outliers.

Category: Smart and intelligent computing

Keywords: Machine learning; Probability distributions; Kullback-Leibler divergence; Pearson divergence; L^2-distance

Received 12 March 2013, Accepted 3 May 2013
*Corresponding Author
I. INTRODUCTION

Let us consider the problem of approximating a divergence D between two probability distributions P and P' on \mathbb{R}^n from two sets of independent and identically distributed samples $X := \{x_i\}_{i=1}^n$ and $X' := \{x'_i\}_{i=1}^n$, following P and P'.

A divergence approximator can be used for various purposes, such as two-sample testing [1, 2], change detection in time-series [3], class-prior estimation under class-balance change [4], salient object detection in images [5], and event detection from movies [6] and Twitter [7]. Furthermore, an approximator of the divergence between the joint distribution and the product of marginal distributions can be used for solving a wide range of machine learning problems [8], including independence testing [9], feature selection [10, 11], feature extraction [12, 13], canonical dependency analysis [14], object matching [15], and causal direction learning [19]. For this reason, accurately approximating a divergence between two probability distributions from their samples has been one of the challenging research topics in the statistics, information theory, and machine learning communities.

A naive way to approximate the divergence from P to P', denoted by $D(P||P')$, is to first obtain estimators P_x and $P'_{x'}$ of the distributions P and P' separately from their samples X and X', and then compute a plug-in approximator $D(P_x||P'_{x'})$.

However, this naive two-step approach violates Vapnik's principle [20]:

If you possess a restricted amount of information for solving some problem, try to solve the problem directly and never solve a more general problem as an intermediate step. It is possible that the available information is sufficient for a direct solution but is insufficient for solving a more general intermediate problem.

More specifically, if we know the distributions P and P', we can immediately know their divergence $D(P||P')$. However, knowing the divergence $D(P||P')$ does not necessarily imply knowing the distributions P and P', because different pairs of distributions can yield the same divergence value. Thus, estimating the distributions P and P' is more general than estimating the divergence $D(P||P')$. Following Vapnik’s principle, direct divergence approximators $D(X,X')$ that do not involve the estimation of distributions P and P' have been developed recently [21-25].

The purpose of this article is to give an overview of the development of such direct divergence approximators. In Section II, we review the definitions of the Kullback-Leibler divergence, the Pearson divergence, the relative Pearson divergence, and the L^2-distance, and discuss their pros and cons. Then, in Section III, we review direct approximators of these divergences that do not involve the estimation of probability distributions. In Section IV, we show practical usage of divergence approximators in unsupervised change-detection in time-series, semi-supervised class-prior estimation under class-balance change, salient object detection in an image, and evaluation of statistical independence between random variables. Finally, we conclude in Section V.

II. DIVERGENCE MEASURES

A function $d(\cdot, \cdot)$ is called a distance if and only if the following four conditions are satisfied:

- **Non-negativity:** $\forall x, y, \quad d(x, y) \geq 0$
- **Non-degeneracy:** $d(x, y) = 0 \iff x = y$
- **Symmetry:** $\forall x, y, \quad d(x, y) = d(y, x)$
- **Triangle inequality:** $\forall x, y, z, \quad d(x, z) \leq d(x, y) + d(y, z)$

A divergence is a pseudo-distance that still acts like a distance, but it may violate some of the above conditions. In this section, we introduce useful divergence and distance measures between probability distributions.

A. Kullback-Leibler (KL) Divergence

The most popular divergence measure in statistics and machine learning is the KL divergence [26], defined as

$$\text{KL}(p||p') := \int p(x) \log \frac{p(x)}{p'(x)} \, dx,$$

where $p(x)$ and $p'(x)$ are probability density functions of P and P', respectively.

Advantages of the KL divergence are that it is compatible with maximum likelihood estimation, that it is invariant under input metric change, that its Riemannian geometric structure is well studied [27], and that it can be approximated accurately via direct density-ratio estimation [21, 22, 28]. However, it is not symmetric, it does not satisfy the triangle inequality, its approximation is computationally expensive due to the log function, and it is sensitive to outliers and numerically unstable, because of the strong non-linearity of the log function, and possible unboundedness of the density-ratio function p/p' [24, 29].

B. Pearson (PE) Divergence

The PE divergence [30] is a squared-loss variant of the KL divergence defined as

$$\text{PE}(p||p') := \int p'(x) \left(\frac{p(x)}{p'(x)} - 1 \right)^2 \, dx. \quad (1)$$

Because both the PE and KL divergences belong to the class of Ali-Silvey-Csiszár divergences (which is also known as f-divergences) [31, 32], they share similar theoretical properties such as the invariance under input metric change.

The PE divergence can also be accurately approxi-
mated via direct density-ratio estimation, in the same way as the KL divergence [23, 28]. However, its approximator can be obtained analytically in a computationally much more efficient manner than the KL divergence, because the quadratic function the PE divergence adopts is compatible with least-squares estimation. Furthermore, the PE divergence tends to be more robust against outliers than the KL divergence [33]. However, other weaknesses of the KL divergence, such as asymmetry, violation of the triangle inequality, and possible unboundedness of the density-ratio function \(p/p' \), remain unsolved in the PE divergence.

C. Relative Pearson (rPE) Divergence

To overcome the possible unboundedness of the density-ratio function \(p/p' \), the rPE divergence was recently introduced [24]. The rPE divergence is defined as

\[
rPE(p||p') := \text{PE}(p||q_\alpha) = \frac{1}{\alpha} \int d x \left(\frac{p(x)}{q_\alpha(x)} - 1 \right)^2,
\]

where, for \(0 \leq \alpha < 1 \), \(q_\alpha \) is defined as the \(\alpha \)-mixture of \(p \) and \(p' \):

\[
q_\alpha = \alpha p + (1 - \alpha)p'.
\]

When \(\alpha = 0 \), the rPE divergence is reduced to the plain PE divergence. The quantity \(p/q_\alpha \) is called the relative density-ratio, which is always upper-bounded by 1/\(\alpha \) for \(\alpha > 0 \), because

\[
p(x) = \frac{1}{\alpha + (1 - \alpha)p'(x)/p(x)} < \frac{1}{\alpha}.
\]

Thus, it can overcome the unboundedness problem of the PE divergence, while the invariance under input metric change is still maintained.

The rPE divergence is still compatible with least-squares estimation, and it can be approximated in almost the same way as the PE divergence via direct relative density-ratio estimation [24]. Indeed, an rPE-divergence approximator can still be obtained analytically in an accurate and computationally efficient manner. However, it still violates symmetry and the triangle inequality, in the same way as the KL and PE divergence. Furthermore, the choice of \(\alpha \) may not be straightforward, in some applications.

D. \(L^2 \)-Distance

The \(L^2 \)-distance is another standard distance measure between probability distributions, defined as

\[
L^2(p,p') := \int d x (p(x) - p'(x))^2.
\]

The \(L^2 \)-distance is a proper distance measure, and thus it is symmetric and satisfies the triangle inequality. Furthermore, the density difference \(p(x) - p'(x) \) is always bounded as long as each density is bounded. Therefore, the \(L^2 \)-distance is stable without the need of tuning any control parameter such as \(\alpha \) in the rPE divergence.

The \(L^2 \)-distance is also compatible with least-squares estimation, and it can be accurately and analytically approximated in a computationally efficient and numerically stable manner via direct density-difference estimation [25]. However, the \(L^2 \)-distance is not invariant under input metric change, which is a unique property inherent to ratio-based divergences.

III. DIRECT DIVERGENCE APPROXIMATION

In this section, we review recent advances in direct divergence approximation.

Suppose that we are given two sets of independent and identically distributed samples \(X := \{ x_i \}_{i=1}^n \) and \(X' := \{ x_i' \}_{i=1}^n \), from probability distributions on \(\mathbb{R}^d \), with densities \(p(x) \) and \(p'(x) \), respectively:

\[
X := \{ x_i \}_{i=1}^n \overset{i.i.d.}{\sim} p(x),
\]

\[
X' := \{ x_i' \}_{i=1}^n \overset{i.i.d.}{\sim} p'(x).
\]

Our goal is to approximate a divergence between from \(p \) to \(p' \) from samples \(X \) and \(X' \).

A. KL Divergence Approximation

The key idea of direct KL divergence approximation is to estimate the density ratio \(p/p' \) without estimating the densities \(p \) and \(p' \) [21]. More specifically, a density-ratio estimator is obtained by minimizing the KL divergence from \(p \) to \(p' \) with respect to a density-ratio model \(r \) under the constraints that the density-ratio function is non-negative and \(r \) is integrated to one:

\[
\min_{r} \text{KL}(p||r\cdot p')
\]

subject to \(r \geq 0 \) and \(\int dx r(x)p(x)dx = 1 \).

Its empirical optimization problem, where an irrelevant constant is ignored and the expectations are approximated by the sample averages, is given by

\[
\max \frac{1}{n} \sum_{i=1}^{n} \log r(x_i)
\]

subject to \(r \geq 0 \) and \(\frac{1}{n} \sum_{i=1}^{n} r(x_i) = 1 \).

Let us consider the following Gaussian density-ratio model:

\[
r(x) = \sum_{i=1}^{k} \theta_i \exp \left(-\frac{\| x - x_i \|}{2 \sigma} \right),
\]

where \(\| \cdot \| \) denotes the \(l_2 \)-norm. We define the vector of parameters \(\{ \theta_i \}_{i=1}^{k} \) as...
\[\theta = (\theta_1, ..., \theta_n), \]

where \(\top \) denotes the transpose. In this model, the Gaussian kernels are located on numerator samples \(\{x_i\}_{i=1}^n \), because the density ratio \(p/p' \) tends to take large values in the regions where the numerator samples \(\{x_i\}_{i=1}^n \) exist. Alternatively, Gaussian kernels may be located on both numerator and denominator samples, but this seems not to further improve the accuracy [21]. When \(n \) is very large, a (random) subset of numerator samples \(\{x_i\}_{i=1}^n \) may be chosen as Gaussian centers, which can reduce the computational cost.

For the Gaussian density-ratio model (3), the above optimization problem is expressed as

\[
\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{j=1}^{n} \exp \left(\frac{-|x_i - x_j|^2}{2\sigma^2} \right) \right) \\
\text{subject to } \theta_1, ..., \theta_n \geq 0 \\
\text{and } \frac{1}{n} \sum_{i=1}^{n} \theta_i \exp \left(\frac{-|x_i|^2}{2\sigma^2} \right) = 1.
\]

This is a convex optimization problem, and thus the global optimal solution can be obtained easily, e.g., by gradient-projection iterations. Furthermore, the global optimal solution tends to be sparse (i.e., many parameter values become exactly zero), which can be utilized for reducing the computational cost.

The Gaussian width \(\sigma \) is a tuning parameter in this algorithm, and it can be systematically optimized by cross-validation with respect to the objective function. More specifically, the numerator samples \(X := \{x_i\}_{i=1}^n \) are divided into \(T \) disjoint subsets \(\{X_t\}_{t=1}^T \) of (approximately) the same size. Then, a density-ratio estimator \(\hat{r}(x) \) is obtained using \(X|X_t \) and \(X' := \{x_i\}_{i=1}^n \) (i.e., all numerator samples without \(X_t \) and all denominator samples), and its objective value for the hold-out numerator samples \(X_t \) is computed:

\[
\frac{1}{|X_t|} \sum_{x_i \in X_t} \log \hat{r}(x_i),
\]

where \(|X_t| \) denotes the number of elements in the set \(X_t \). This procedure is repeated for \(t = 1, ..., T \), and the \(\sigma \) value that maximizes the average of the above hold-out objective values is chosen as the best one.

Given a density-ratio estimator \(\hat{r} \), a KL-divergence approximator \(\hat{KL}(X'|X) \) can be constructed as

\[
\hat{KL}(X'|X) := \frac{1}{n} \sum_{i=1}^{n} \log \hat{r}(x_i).
\]

A MATLAB\textregistered (MathWorks, Natick, MA, USA) implementation of the above KL divergence approximator (called the KL importance estimation procedure; KLIEP) is available from

Variations of this procedure for other density-ratio models have been developed including the log-linear model [34], the Gaussian mixture model [35], and the mixture of probabilistic principal component analyzers [36]. Also, an unconstrained variant, which corresponds to approximately maximizing the Legendre-Fenchel lower bound of the KL divergence [37], was proposed [22]:

\[
\hat{KL}(X'|X) := \max_{\theta} \left[\frac{1}{n} \sum_{i=1}^{n} \log r(x_i) - \frac{1}{n} \sum_{i=1}^{n} r(x_i) + 1 \right].
\]

B. PE Divergence Approximation

The PE divergence can also be directly approximated without estimating the densities \(p \) and \(p' \) via direct estimation of the density ratio \(p/p' \) [23]. More specifically, a density-ratio estimator is obtained by minimizing the \(p' \)-weighted squared difference between a density-ratio model \(r \) and the true density-ratio function \(p/p' \):

\[
\min_{r} \int p'(x) \left(r(x) - \frac{p(x)}{p'(x)} \right)^2 dx.
\]

Its empirical criterion, where an irrelevant constant is ignored, and the expectations are approximated by the sample averages, is given by

\[
\min_{r} \left[\frac{1}{n} \sum_{i=1}^{n} r(x_i)^2 - \frac{2}{n} \sum_{i=1}^{n} r(x_i) \right].
\]

For the Gaussian density-ratio model (3) together with the \(L_2 \)-regularizer, the above optimization problem is expressed as

\[
\min_{\theta} \left[\theta^T \cdot \hat{G} \cdot \theta - 2 \theta^T \hat{h} + \lambda \sum_{i=1}^{n} \theta_i \right],
\]

where \(\lambda \geq 0 \) denotes the regularization parameter, and \(\hat{G} \) is the \(n \times n \) matrix with the \((l,l)\)-th element defined by

\[
\hat{G}_{l,l} := \frac{1}{n} \sum_{i=1}^{n} \exp \left(\frac{4\sigma^2}{2\sigma^2} \right) \exp \left(\frac{-|x_i|^2}{2\sigma^2} \right),
\]

and \(\hat{h} \) is the \(n \)-dimensional vector with the \(l \)-th element defined by

\[
\hat{h}_l := \frac{1}{n} \sum_{i=1}^{n} \exp \left(\frac{-|x_i|^2}{2\sigma^2} \right).
\]

This is a convex optimization problem, and the global optimal solution can be computed analytically as

\[
(\hat{G} + \lambda I)^{-1} \hat{h},
\]

where \(I \) denotes the identity matrix.

The Gaussian width \(\sigma \) and the regularization parameter \(\lambda \) are the tuning parameters in this algorithm, and they can be systematically optimized by cross-validation, with
respect to the objective function, as follows: First, the numerator and denominator samples \(X = \{ x_i \}_{i=1}^n \) and \(X' = \{ x_i' \}_{i=1}^n \) are divided into \(T \) disjoint subsets \(\{ X_t \}_{t=1}^T \) and \(\{ X'_t \}_{t=1}^T \), respectively. Then, a density-ratio estimator \(\hat{r}_t(x) \) is obtained using \(XX_t \) and \(X'X'_t \) (i.e., all samples without \(X_t \) and \(X'_t \)), and its objective value for the hold-out samples \(X_t \) and \(X'_t \) is computed:

\[
\frac{1}{|X|} \sum_{x \in X} \hat{r}_t(x)^2 - \frac{2}{|X'|} \sum_{x' \in X'} \hat{r}_t(x).
\]

This procedure is repeated for \(t = 1, \ldots, T \), and the \(\sigma \) and \(\lambda \) values that maximize the average of the above hold-out objective values are chosen as the best ones.

By expanding the squared term \(\left(\frac{p(x)}{q(x)} - 1 \right)^2 \) in Equation (1), the PE divergence can be expressed as

\[
PE = \int p(x) \left(\frac{p(x)}{\hat{p}(x)} \right)^2 dx - 1 \tag{6}
\]

\[
= - \int p(x) \left(\frac{p(x)}{\hat{p}(x)} \right)^2 dx + 2 \int p(x) \hat{p}(x) \frac{\hat{p}(x)}{\hat{p}(x)} dx - 1. \tag{7}
\]

Note that Equation (7) can also be obtained via Legendre-Fenchel convex duality of the divergence functional [38]. Based on these expressions, PE divergence approximators are obtained using a density-ratio estimator \(\hat{r} \) as

\[
\hat{PE}(X||X') := \frac{1}{n} \sum_{i=1}^n \hat{r}(x) - 1, \tag{8}
\]

\[
\hat{PE}(X'||X) := - \frac{1}{n'} \sum_{i'=1}^{n'} \hat{r}(x') + 2 \sum_{i=1}^n \hat{r}(x) - 1. \tag{9}
\]

Equation (8) is suitable for algorithmic development because this would be the simplest expression, while Equation (9) is suitable for theoretical analysis because this corresponds to the negative of the objective function in Equation (4).

A MATLAB implementation of the above method (called unconstrained least-squares importance fitting; uLSIF) is available from

If the \(L_1 \)-regularizer

\[
\| \theta \|^2 := \sum_{i=1}^n \theta_i^2
\]

in Equation (4) is replaced with the \(L_1 \)-regularizer

\[
\| \theta \| := \sum_{i=1}^n | \theta_i |
\]

the solution tends to be sparse [39]. Then the solution can be obtained in a computationally more efficient way [40], and furthermore, a regularization path tracking algorithm [41] is available for efficiently computing solutions with different regularization parameter values.

C. \(rPE \) Divergence Approximation

The \(rPE \) divergence can be directly estimated in the same way as the PE divergence [24]:

\[
\min_{\theta} \int q_{\theta}(x)^2 \left(\frac{p(x)}{q_{\theta}(x)} \right)^2 dx
\]

Its empirical criterion, where an irrelevant constant is ignored and the expectations are approximated by sample averages, is given by

\[
\min_{\theta} \left[\sum_{i=1}^n r(x) + \sum_{i=1}^n \hat{r}(x) - 2 \sum_{i=1}^n \hat{r}(x) \right].
\]

For the Gaussian density-ratio model (3), together with the \(L_2 \)-regularizer, the above optimization problem is expressed as

\[
\min_{\theta} \left[\sum_{i=1}^n r(x) + \sum_{i=1}^n \hat{r}(x) - 2 \sum_{i=1}^n \hat{r}(x) \right],
\]

where \(\theta \) is the \(n \times n \) matrix, with the \((l, l) \)-th element defined by

\[
\hat{G}_{ll} := \frac{1}{n-1} \sum_{i=1}^n \exp \left(\frac{||x_i - x_l||^2}{2\sigma^2} \right) \exp \left(\frac{||x_i - x_l||^2}{2\sigma^2} \right).
\]

This is a convex optimization problem, and the global optimal solution can be computed analytically as

\[
(\alpha \hat{G} + (1-\alpha) \hat{G} + \lambda I)^{-1} \hat{r}.
\]

Cross-validation for tuning the Gaussian width \(\sigma \) and the regularization parameter \(\lambda \) can be carried out in the same way as the PE-divergence case, with Equation (5) replaced by

\[
\frac{\alpha}{|X|} \sum_{x \in X} \hat{r}_t(x)^2 + \frac{1-\alpha}{|X'|} \sum_{x' \in X'} \hat{r}_t(x') - \frac{2}{|X|} \sum_{x \in X} \hat{r}_t(x).
\]

By expanding the squared term \(\left(\frac{p(x)}{q_{\theta}(x)} - 1 \right)^2 \) in Equation (2), the \(rPE \) divergence can be expressed as

\[
rPE = \int p(x) \frac{p(x)}{q_{\theta}(x)} dx - 1 \tag{10}
\]

\[
= - \int q_{\theta}(x) \left(\frac{p(x)}{q_{\theta}(x)} \right)^2 dx + 2 \int p(x) \frac{p(x)}{q_{\theta}(x)} dx - 1. \tag{11}
\]

Based on these expressions, \(rPE \) divergence approximators are given, using the relative density-ratio estimator \(\hat{r}_\alpha \) as

Masashi Sugiyama et al. 103 http://jcse.kiise.org
where model:

\[
\hat{r}_{\text{PE}}(X||Y) := \frac{1}{n} \sum_{i=1}^{n} \tilde{r}_a(x_i) - 1 ,
\]

\[
\hat{r}_{\text{PE}}(X||Y) := \frac{\delta}{n} \sum_{i=1}^{n} \tilde{r}_a(x_i) - \frac{(1-\alpha)}{n} \sum_{i=1}^{n} \tilde{r}_a(x_i') + \frac{2}{n} \sum_{i=1}^{n} \tilde{r}_a(x_i') - 1 .
\]

D. L2-Distance Approximation

The key idea is to directly estimate the density difference \(p - p' \) without estimating each density \([25]\). More specifically, a density-difference estimator is obtained by minimizing the squared difference between a density-difference model \(f \) and the true density-difference function \(p - p' \):

\[
\min_{f} \left[\int (f(x) - (p(x) - p'(x)))^2 \, dx \right].
\]

Its empirical criterion, where an irrelevant constant is ignored and the expectation is approximated by the sample average, is given by

\[
\min_{f} \left[\frac{1}{n} \sum_{i=1}^{n} \xi_i \exp \left(\frac{\| x_i - c_i \|}{2\sigma} \right) \right].
\]

Let us consider the following Gaussian density-difference model:

\[
f(x) = \sum_{i=1}^{n} \xi_i \exp \left(\frac{\| x - c_i \|}{2\sigma} \right),
\]

where

\[
(c_1, ..., c_n, c_{n+1}, ..., c_{2n}) := (x_1, ..., x_n, x'_1, ..., x'_n)
\]

are Gaussian centers. Then the above optimization problem is expressed as

\[
\min_{\xi = \xi_1, ..., \xi_n, \alpha^T} \left[\sum_{i=1}^{n} \xi_i^T U \xi_i - 2 \sum_{i=1}^{n} \xi_i^T \hat{\nu}_i + \lambda \| \xi \|_2^2 \right],
\]

where the \(L^2 \)-regularizer \(\lambda \| \xi \|_2^2 \) is included, \(U \) is the \((n + n') \times (n + n')\) matrix, with the \((l, l')\)-th element defined by

\[
U_{ll'} := \int_{\mathbb{R}^d} \exp \left(\frac{\| x - c_l \|}{2\sigma} \right) \exp \left(\frac{\| x - c_{l'} \|}{2\sigma} \right) \, dx = \left(\pi\sigma^2 \right)^{-d/2} \exp \left(\frac{-\| c_l - c_{l'} \|}{4\sigma^2} \right),
\]

d denotes the dimensionality of \(x \), and \(\hat{\nu} \) is the \((n + n')\)-dimensional vector, with the \(l \)-th element defined by

\[
\hat{\nu}_l := \frac{1}{n} \sum_{i=1}^{n} \exp \left(\frac{-\| x_i - c_l \|}{2\sigma} \right) - \frac{1}{n'} \sum_{i=1}^{n'} \exp \left(\frac{-\| x'_i - c_l \|}{2\sigma} \right).
\]

This is a convex optimization problem, and the global optimal solution can be computed analytically as

\[
(U + \lambda I)^{-1} \hat{\nu}.
\]

The above optimization problem is essentially the same form as least-squares density-ratio approximation for the PE divergence, and therefore least-squares density-difference approximation can enjoy all the computational properties of least-squares density-ratio approximation.

Cross-validation for tuning the Gaussian width \(\sigma \) and the regularization parameter \(\lambda \) can be carried out as follows: First, the numerator and denominator samples \(X = \{ x_i \}_{i=1}^n \) and \(X' = \{ x'_i \}_{i=1}^{n'} \) are divided into \(T \) disjoint subsets \(\{ X_i \}_{i=1}^T \) and \(\{ X'_i \}_{i=1}^T \), respectively. Then a density-difference estimator \(f(x) \) is obtained using \(\cup X_i \) and \(\cup X'_i \) (i.e., all samples without \(X_i \) and \(X'_i \)), and its objective value for the hold-out samples \(X_i \) and \(X'_i \) is computed:

\[
\hat{f}(x)\,dx - \frac{2}{|X_i|} \sum_{x \in X_i} \hat{f}(x) + \frac{2}{|X_i'|} \sum_{x \in X_i'} \hat{f}(x').
\]

Note that the first term can be computed analytically for the Gaussian density-difference model (14):

\[
\hat{f}(x)\,dx = \hat{\xi}_l U \hat{\xi}_l,
\]

where \(\hat{\xi}_l \) is the parameter vector learned from \(\cup X_i \) and \(\cup X'_i \).

For an equivalent expression of the \(L^2 \)-distance,

\[
L^2(p, p') = \int f(x)p(x)\,dx - \int f(x)p'(x')\,dx',
\]

if \(f \) is replaced with a density-difference estimator \(\hat{f} \), and the expectations are approximated by empirical averages, the following \(L^2 \)-distance approximator can be obtained:

\[
\hat{\nu} \perp \hat{\xi}_l.
\]

Similarly, for another expression

\[
L^2(p, p') = \int f(x)^2\,dx,
\]

replacing \(f \) with a density-difference estimator \(\hat{f} \) gives another \(L^2 \)-distance approximator:

\[
\hat{\xi}_l U \hat{\xi}_l.
\]

Equations (15) and (16) themselves give valid approximations to \(L^2(p, p') \), but their linear combination

\[
\hat{L}(X, X') := 2\hat{\nu} \perp \hat{\xi}_l - \hat{\xi}_l U \hat{\xi}_l,
\]

was shown to have a smaller bias than Equations (15) and (16). A MATLAB implementation of the above algorithm
IV. USAGE OF DIVERGENCE APPROXIMATORS IN MACHINE LEARNING

In this section, we show applications of divergence approximators in machine learning.

A. Class-Prior Estimation under Class-Balance Change

In real-world pattern recognition tasks, changes in class balance are often observed between the training and test phases. In such cases, naive classifier training produces significant estimation bias, because the class balance in the training dataset does not properly reflect that in the test dataset. Here, let us consider a binary pattern recognition task of classifying pattern ∈ ±1. The goal is to learn the class balance in a test dataset under a semi-supervised learning setup, where unlabeled samples are provided, in addition to labeled training samples [42]. The class balance in the test set can be estimated by matching a mixture of class-wise training input densities,

\[\pi \rho_{\text{train}}(x | y = +1) + (1 - \pi) \rho_{\text{train}}(x | y = -1) \]

to the test input density \(\rho_{\text{test}}(x) \) under some divergence measure [4]. Here, \(\pi \in [0, 1] \) is a mixing coefficient to be learned, to minimize the divergence (Fig. 1).

We use four UCI benchmark datasets (http://archive.ics.uci.edu/ml/) for numerical experiments, where we randomly choose 10 labeled training samples from each class, and 50 unlabeled test samples, following true class-prior \(\pi^* = 0.1, 0.2, \ldots, 0.9 \).

The graphs on the left-hand side of Fig. 2 plot the mean and standard error of the squared difference between true and estimated class-balances \(\pi \). These graphs show that LSDD tends to provide better class-balance estimates than the two-step procedure of first estimating probability densities by kernel density estimation (KDE) and then learning \(\pi \).

The graphs on the right-hand side of Fig. 2 plot the test misclassification error obtained by a weighted \(L_2 \)-regularized kernel least-squares classifier [43], with weighted cross-validation [44]. The results show that the LSDD-based method provides lower classification errors, which would be brought by good estimates of test class-balances.

B. Change-Detection in Time-Series

The goal is to discover abrupt property changes behind time-series data. Let \(y(t) \in \mathbb{R}^m \) be an \(m \)-dimensional time-series sample at time \(t \), and let

\[Y(t) := [y(t) \top, y(t+1) \top, \ldots, y(t+k-1) \top] \top \in \mathbb{R}^{km} \]

be a subsequence of time series at time \(t \) with length \(k \). Instead of a single point \(y(t) \), the subsequence \(Y(t) \) is treated as a sample here, because time-dependent information can be naturally incorporated by this trick [3]. Let \(\mathcal{Y}(t) := \{Y(t), Y(t+1), \ldots, Y(t+r-1)\} \) be a set of \(r \) retrospective subsequence samples starting at time \(t \). Then a divergence between the probability distributions of \(\mathcal{Y}(t) \) and \(\mathcal{Y}(t+r) \) may be used as the plausibility of change points (Fig. 3).

In Fig. 4, we illustrate results of unsupervised change detection for the Information Processing Society of Japan Special Interest Group of Spoken Language Processing (IPSJ SIG-SLP) Corpora and Environments for Noisy Speech Recognition (CENSREC) dataset (http://research.nii.ac.jp/src/en/CENSREC-1-C.html) that records human voice in noisy environments, such as a restaurant, and the Human Activity Sensing Consortium (HASC) challenge 2011 dataset (http://hasc.jp/hc2011/), that provides human activity information collected by portable three-axis accelerometers. These graphs show that the KL-based method is excessively sensitive to noise, and thus change points are not clearly detected. On the other hand, the \(L^2 \)-based method more clearly indicates the existence of change points.

It was also demonstrated that divergence-based change-detection methods are useful in event detection from movies [6], and Twitter [7].

C. Salient Object Detection in an Image

The goal is to find salient objects in an image. This can be achieved by computing a divergence between the prob-
ability distributions of image features (such as brightness, edges, and colors) in the center window and its surroundings [5]. This divergence computation is swept over the entire image, with changing scales (Fig. 5).

The object detection results on the MSRA salient object database [45] by the rPE divergence with $\alpha = 0.1$ are described in Fig. 6, where pixels in gray-scale saliency maps take brighter color if the estimated divergence value

Fig. 2. (Left) Squared error of class-prior estimation. (Right) Misclassification error by a weighted L_2-regularized kernel least-squares classifier with weighted cross-validation. (a) Australian, (b) diabetes, (c) German, and (d) statlogheart datasets. LSDD: least-squares density difference, KDE: kernel density estimation.
The results show that visually salient objects can be successfully detected by the divergence-based approach.

D. Measuring Statistical Independence

The goal is to measure how strongly two random variables U and V are statistically dependent, from paired samples $\{(u_i, v_i)\}_{i=1}^n$ drawn independently from the joint distribution, with density $p_{U,V}(u,v)$. Let us consider a divergence between the joint density $p_{U,V}(u,v)$ and the product of marginal densities $p_U(u) \cdot p_V(v)$. This actually serves as a measure of statistical independence, because U and V are independent if and only if the divergence is zero (i.e., $p_{U,V}(u,v) = p_U(u) \cdot p_V(v)$), and the dependence between U and V is stronger, if the divergence is larger.

Such a dependence measure can be approximated in the same way as ordinary divergences by using the two datasets formed as $X = \{(u_i, v_i)\}_{i=1}^n$ and $X' = \{(u_j, v_j)\}_{j=1}^{n'}$. The dependence measure based on the KL divergence is called mutual information (MI) [46]:

$$MI := \int \int p_{U,V}(u,v) \log \frac{p_{U,V}(u,v)}{p_U(u)p_V(v)} \, du \, dv.$$

MI plays a central role in information theory [47].

On the other hand, its PE-divergence variant is called the squared-loss mutual information (SMI):

$$SMI := \int \int (p_{U,V}(u,v) - p_U(u)p_V(v))^2 \, du \, dv.$$

SMI is useful for solving various machine learning tasks [8], including independence testing [9], feature selection [10, 11], feature extraction [12, 13], canonical dependency analysis [14], object matching [15], independent component analysis [16], clustering [17, 18], and causal direction estimation [19].

An L^2-distance variant of the dependence measure is called quadratic mutual information (QMI) [48]:

$$QMI := \int \int (p_{U,V}(u,v) - p_U(u)p_V(v))^2 \, du \, dv.$$

QMI is also a useful dependence measure in practice [49].
V. CONCLUSIONS

In this article, we reviewed recent advances in direct divergence approximation. Direct divergence approximators theoretically achieve optimal convergence rates, both in parametric and non-parametric cases, and experimentally compare favorably with the naive density-estimation counterparts [21-25].

However, direct divergence approximators still suffer from the curse of dimensionality. A possible cure for this problem is to combine them with dimensionality reduction, based on the hope that two probability distributions share some commonality [51, 52]. Further investigating this line would be a promising future direction.

ACKNOWLEDGMENTS

MS was supported by the JST PRESTO program, the FIRST program, and AOARD. SL was supported by the JST PRESTO program. MCdP was supported by the MEXT scholarship, and the JST PRESTO program. TS was supported by MEXT KAKENHI 22700289. TK was supported by JSPS KAKENHI 24500340.

REFERENCES

34. K. Pearson, “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling,” *Philosophical Magazine*, vol. 50, no. 302, pp. 157-175, 1900.

39. M. Yamada and M. Sugiyama, “Direct importance estima-

Masashi Sugiyama

Masashi Sugiyama was born in Osaka, Japan, in 1974. He received the degrees of Bachelor of Engineering, Master of Engineering, and Doctor of Engineering in Computer Science from Tokyo Institute of Technology, Japan in 1997, 1999, and 2001, respectively. In 2001, he was appointed Assistant Professor in the same institute, and from 2003, he is Associate Professor. He received Alexander von Humboldt Foundation Research Fellowship and stayed at Fraunhofer Institute, Berlin, Germany, from 2003 to 2004. In 2006, he received European Commission Program Erasmus Mundus Scholarship and stayed at University of Edinburgh, UK. He was awarded Faculty Award from IBM in 2007 for his contribution to machine learning under non-stationarity, and Nagao Special Researcher Award from IPSJ in 2011 for his contribution to the density-ratio paradigm of machine learning. His research interest includes theories and algorithms of machine learning and data mining, and a wide range of applications such as signal processing, image processing, and robot control.

Song Liu

Song Liu was born in Nanjing, China, in 1987. He received the degree of Bachelor of Engineering in Soochow University, China, and Master of Science in University of Bristol. He is now a Ph.D. student in Tokyo Institute of Technology and a research fellow in Japan Society for the Promotion of Science (JSPS). In 2010, he worked in National Institute of Informatics (NII), Japan as a visiting researcher, and in 2011-2012, he was accepted as an intern in both NEC soft, and NEC central laboratory in Japan. His research interests include most methodologies/applications of Machine Learning and Data Mining, especially in change-point detection and density ratio estimation.
Marthinus Christoffel du Plessis

Marthinus Christoffel du Plessis was born in Pretoria, South Africa in 1984. He received the degrees B.E., B.E.(Hons) and M.Eng. in Computer Engineering at the University of Pretoria, South Africa in 2007, 2008, and 2010. He is currently pursuing a Ph.D. in computer science at Tokyo Institute of Technology, Japan, funded by a Japanese government MEXT scholarship. His research interests are divergence estimation and learning under non-stationarity.

Masao Yamanaka

Masao Yamanaka has worked for corporate R&D Headquarters in CANON INC. He has been engaged in the development of image information processing technology, such as face recognition in still image, pose estimation in depth image, and semantic event detection in video so far. He received the degree of Doctor of Engineering in Computational Intelligence and Systems Science from Tokyo Institute of Technology, Japan in 2013. His recent research interest includes not only a wide range of image information processing techniques but also bioinformatics using advanced machine learning.

Makoto Yamada

Makoto Yamada received the M.S. degree in electrical engineering from Colorado State University, Fort Collins, in 2005 and the Ph.D. degree in statistical science from The Graduate Universities of Advanced Studies, Tokyo, in 2010. He has held positions as a systems engineer for Hitachi corporation from 2005 to 2007, as a researcher with Yamaha corporation from 2007 to 2010, and as a postdoctoral fellow with Tokyo Institute of Technology from 2010 to 2012. In 2012, he has held an internship appointment in computer vision and machine learning at Carnegie Mellon University and Disney Research Pittsburgh. Currently, he is a research associate at NTT Communication Science Laboratories. His research interests include machine learning and its application to signal processing and computer vision.

Taiji Suzuki

Taiji Suzuki was born in Tokyo, Japan, in 1981. He received the degrees of Bachelor of Engineering from the University of Tokyo, Japan, in 2004. He received the M.S. and Ph.D. degrees of Information Science and Technology from the University of Tokyo, Japan, in 2006 and 2009, respectively, for both of which he received the dean's award. He is currently an Assistant Professor in Department of Mathematical Informatics, the University of Tokyo, Japan. His research interests include statistical learning theory, machine learning, statistics, and their applications.

Takafumi Kanamori

Takafumi Kanamori is an Associate Professor at Nagoya University. He received his B.E. and M.E. degrees from University of Tokyo, and Ph.D. degree from the Graduate University for Advanced Studies, Japan, in 1994, 1996 and 1999, respectively. His research interests include mathematical statistics, machine learning, information geometry, and optimization.