통계적 특징 기반 인공신경망을 이용한 온라인 서명인식

On-line Signature Recognition Using Statistical Feature Based Artificial Neural Network

  • cc icon
  • ABSTRACT

    본 논문에서는 키넥트(Kinect)를 통해 얻은 깊이 영상에서 찾아낸 손가락의 끝점으로 임의의 3차원 공간인 공중에 그린 서명을 인식하는 알고리즘을 제안한다. 3차원 공간상에서 서명 궤적의 시프팅(Shifting), 스케일링(Scaling) 변화에 대응하기 위해 X, Y, Z좌표에 관한 각각 10개의 통계적 특징을 사용하였다. 인공신경망(Artificial Neural Network)은 기계학습 중 하나이며, 패턴인식 분야의 복잡한 분류 문제를 해결할 수 있는 도구로 사용되고 있다. 제안한 알고리즘을 실제 온라인 서명인식 시스템을 구현하여 적용하였고, 앞서 추출한 통계적 특징을 인공신경망의 입력 값으로 사용하여 학습 과정을 거친 후 4가지 서명을 분류하는 것을 확인하였다.


    In this paper, we propose an on-line signature recognition algorithm using fingertip point in the air from the depth image acquired by Kinect. We use ten statistical features for each X, Y, Z axis to react to changes in Shifting and Scaling of the signature trajectories in three-dimensional space. Artificial Neural Network is a machine learning algorithm used as a tool to solve the complex classification problem in pattern recognition. We implement the proposed algorithm to actual on-line signature recognition system. In experiment, we verify the proposed method is successful to classify 4 different on-line signatures.

  • KEYWORD

    키넥트 , 서명인식 , 통계적 특징 , 기계학습 , 인공신경망