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We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar 
magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a 
level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law 
distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phase-
averaged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the 
Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the 
outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in 
the spectrum of the Geminga pulsar.
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1. INTRODUCTION

The study of the emission patterns of gamma-ray pulsars 

has progressed ever since their discovery. There have been 

different models proposed in the past to explain the high 

energy radiation, i.e. the polar cap model (Ruderman & 

Sutherland 1975), the outer gap model (Cheng et al. 1986a, 

1986b) and the slot gap model (Arons 1983). And, ever since 

the launch of the Fermi gamma-ray telescope, the study of 

gamma-ray pulsar emission patterns has become much 

easier. The large area telescope (LAT) on board Fermi has 

now detected gamma-ray photons from over 150 pulsars 

(Ackermann et al. 2015). The study of Romani & Watters 

(2010) showed that by comparing the computed pulse 

profiles with observations, it could be confidently stated 

that the outer gap model is more consistent than the slot 

cap model, although neither of these models can explain all 

the features of gamma-ray pulsars. Spectral fits of pulsars 

have showed that the observed spectrum is fitted well by 

a power law with a super-exponential cut-off (with a form 

of dN/dE∝E-aexp[-(E/Ec)
b]). For different outer gap models, 

there is one common idea, that is, the electric field along the 

magnetic field is raised from charged-deficit regions. And, 

a portion of the curvature photons converted into electron/

positron pairs that limited the size of the outer gap; thus, the 

size of the outer gap cannot take the entire open field line 

region (Cheng et al. 1986a, b; Zhang & Cheng 1997).

A previous model, the simple two-layer outer gap 

model (Wang et al. 2010), was used to study the phase-

averaged spectrum of pulsars. In this model, the outer gap is 

considered as a combination of a main acceleration region 

and a screening region. The charge density distribution of 

the outer gap was assumed to be a simple step function. 

The acceleration region has a charge density much lower 

than the Goldreich-Julian density and is nearly a vacuum, 

which raises a strong electric field; particles are accelerated 

and curvature photons with energy in the GeV range are 

emitted. The particles produced by the pair creation process 

stop the growth of the acceleration region and form the 

screening region, which produce photons with energy of 

around 100 MeV. However, this can only explain the phase-

averaged spectra, not the phase-resolved spectra. A previous 
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study has considered the azimuthal structure of the outer 

gap (Wang et al. 2011) and the phase-resolved spectra and 

light curves of pulsars. In their work, they tested their model 

using the Vela pulsar, which has an energy dependent third 

peak in the light curve. The model successfully explained 

the phase-averaged spectra, the phase-resolved spectra, and 

the light curve.

One study has shown that non-thermal X-ray emission 

from the outer magnetosphere could be generated by 

Inverse-Compton Scattering between primary particles 

in the gap and the radio waves coming towards the pulsar 

(Ng et al. 2014). When the energy of the primary particles is 

large enough, the Inverse-Compton Scattering is capable of 

producing GeV photons.

In this paper, we assume, based on the three-dimensional 

two-layer outer gap model, that the magnetosphere of 

a pulsar is time-dependent. Instead of solving a time-

dependent Poisson equation, we assume that one of the 

spectral parameters has a power-law distribution. For 

a certain value of the parameter we assign a possibility. 

Hence when we consider the distribution of the parameter, 

we can obtain a weighted spectrum. And, using the Inverse-

Compton Scattering component, we can calculate the high 

energy tail of powerful pulsars.

This paper is organized as follows. In section 2, we present 

a simple non-stationary two-layer three-dimensional outer 

gap model. Here, instead of solving a time-dependent 

Poisson equation, we choose to give a probability distribution 

to the outer gap structure, showing that the structure of 

the outer gap changes over time. Then, to explain the slow 

dropping high energy tail of Geminga pulsar, we discuss the 

Inverse Compton Scattering component in relation to the 

high energy part. In section 3, we present the model fitting 

results of the non-stationary model and the model combining 

the Inverse-Compton Scattering component. In sections 4 

and 5, we present the discussion and conclusions.

2. THEORETICAL MODEL

2.1 Non-stationary Outer Gap Model

It is known that the outer gap extends from the last open 

field lines to the region between the null charge surface and 

the light cylinder. The previous study by Wang et al. (2010, 

2011) assumed that the outer gap can be divided into two 

parts, the acceleration and the screening regions. They 

assumed that in the trans-field direction the charge density 

would have a simple step function, as shown below:

 2 

only explain the phase-averaged spectra, not the phase-resolved spectra. A previous study has 
considered the azimuthal structure of the outer gap (Wang et al. 2011) and the phase-resolved 
spectra and light curves of pulsars. In their work, they tested their model using the Vela pulsar, 
which has an energy dependent third peak in the light curve. The model successfully explained the 
phase-averaged spectra, the phase-resolved spectra, and the light curve. 

One study has shown that non-thermal X-ray emission from the outer magnetosphere could be 
generated by Inverse-Compton Scattering between primary particles in the gap and the radio waves 
coming towards the pulsar (Ng et al. 2014). When the energy of the primary particles is large 
enough, the Inverse-Compton Scattering is capable of producing GeV photons. 

In this paper, we assume, based on the three-dimensional two-layer outer gap model, that the 
magnetosphere of a pulsar is time-dependent. Instead of solving a time-dependent Poisson equation, 
we assume that one of the spectral parameters has a power-law distribution. For a certain value of 
the parameter we assign a possibility ( probability?). Hence when we consider the distribution of 
the parameter, we can obtain a weighted spectrum. And, using the Inverse-Compton Scattering 
component, we can calculate the high energy tail of powerful pulsars. 

This paper is organized as follows. In section 2, we present a simple non-stationary two-layer 
three-dimensional outer gap model. Here, instead of solving a time-dependent Poisson equation, we 
choose to give a probability distribution to the outer gap structure, showing that the structure of the 
outer gap changes over time. Then, to explain the slow dropping high energy tail of Geminga pulsar, 
we discuss the Inverse Compton Scattering component in relation to the high energy part. In section 
3, we present the model fitting results of the non-stationary model and the model combining the 
Inverse-Compton Scattering component. In sections 4 and 5, we present the discussion and 
conclusions. 
 
2. THEORETICAL MODEL 
  2.1 Non-stationary Outer Gap Model 

It is known that the outer gap extends from the last open field lines to the region between the 
null charge surface and the light cylinder. The previous study by Wang et al. (2010, 2011) assumed 
that the outer gap can be divided into two parts, the acceleration and the screening regions. They 
assumed that in the trans-field direction the charge density would have a simple step function, as 
shown below: 

ρ(𝑥𝑥, 𝑧𝑧, 𝜙𝜙𝑝𝑝) = {
𝜌𝜌1(𝑥𝑥, 𝜙𝜙𝑝𝑝),𝑖𝑖𝑖𝑖0 ≤ 𝑧𝑧 ≤ ℎ1(𝑥𝑥, 𝜙𝜙𝑝𝑝)

𝜌𝜌2(𝑥𝑥, 𝜙𝜙𝑝𝑝),𝑖𝑖𝑖𝑖ℎ1(𝑥𝑥, 𝜙𝜙𝑝𝑝) ≤ 𝑧𝑧 ≤ ℎ2(𝑥𝑥, 𝜙𝜙𝑝𝑝)
                 (1) 
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𝜕𝜕𝜕𝜕2 +

𝜕𝜕2
𝜕𝜕𝜕𝜕2)Φ
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becomes again a two dimensional one. Under the two dimensional model, using certain boundary 
conditions, the acceleration electric field can be obtained. Thus the curvature radiation spectrum can 
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𝑓𝑓 (𝜙𝜙𝑝𝑝) =
𝐶𝐶

𝑟𝑟𝑃𝑃(𝜙𝜙𝑝𝑝)
                               (3) 

ℎ1
ℎ2
(𝜙𝜙𝑝𝑝) = 𝐵𝐵1 + 𝐵𝐵2

1/𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜙𝜙𝑝𝑝)−1/𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚

1/𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛−1/𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚                    (4) 
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𝑓𝑓(𝜙𝜙𝑝𝑝+∆𝜙𝜙𝑝𝑝)

𝑓𝑓(𝜙𝜙𝑝𝑝)
                            (5) 
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Here we have five spectral parameters, C, 𝐵𝐵1, 𝐵𝐵2, 𝜌𝜌0̅̅ ̅, and F. Combining these with the inclination 
angle and the viewing angle, one report (Wang et al. 2011) found that there are a total of seven 
parameters that we need to fix for the spectrum. They applied this model to the Vela pulsar and 
found that the model could successfully explain the phase-resolved spectrum and the energy-
dependent third peak in the pulsar’s light curve. 
    However, when we tried to apply this model to the Geminga pulsar, we found that when the 
energy of the photons exceeded the cutoff energy, the spectrum dropped faster than expected, which 
means that if this model is used, a flux of above ~ GeV photons will be underestimated. We 
introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 

𝑃𝑃𝐼𝐼𝐼𝐼
𝑃𝑃𝑐𝑐𝑛𝑛𝑐𝑐

~ 4𝜎𝜎𝑇𝑇𝑐𝑐𝛾𝛾2𝑈𝑈𝑝𝑝ℎ/3
2𝑒𝑒2𝑐𝑐𝛾𝛾4/3𝑅𝑅𝑐𝑐2

~0.1 𝑈𝑈𝑝𝑝ℎ
104𝑒𝑒𝑟𝑟𝑒𝑒𝑐𝑐𝑐𝑐−3 (

𝛾𝛾
107)

−2( 𝑅𝑅𝑐𝑐
107𝑐𝑐𝑐𝑐)

−2                  (7) 
We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 

𝑑𝑑𝑃𝑃𝐼𝐼𝐼𝐼
𝑑𝑑Ω ~ (1−𝛽𝛽𝑐𝑐𝛽𝛽𝛽𝛽𝜃𝜃0)

𝛾𝛾2(1−𝛽𝛽𝑐𝑐𝛽𝛽𝛽𝛽𝜃𝜃1)2
𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑

𝑑𝑑𝜎𝜎′
𝑑𝑑Ω′                           (8) 

Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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Here we have five spectral parameters, C, 𝐵𝐵1, 𝐵𝐵2, 𝜌𝜌0̅̅ ̅, and F. Combining these with the inclination 
angle and the viewing angle, one report (Wang et al. 2011) found that there are a total of seven 
parameters that we need to fix for the spectrum. They applied this model to the Vela pulsar and 
found that the model could successfully explain the phase-resolved spectrum and the energy-
dependent third peak in the pulsar’s light curve. 
    However, when we tried to apply this model to the Geminga pulsar, we found that when the 
energy of the photons exceeded the cutoff energy, the spectrum dropped faster than expected, which 
means that if this model is used, a flux of above ~ GeV photons will be underestimated. We 
introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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Here we have five spectral parameters, C, 𝐵𝐵1, 𝐵𝐵2, 𝜌𝜌0̅̅ ̅, and F. Combining these with the inclination 
angle and the viewing angle, one report (Wang et al. 2011) found that there are a total of seven 
parameters that we need to fix for the spectrum. They applied this model to the Vela pulsar and 
found that the model could successfully explain the phase-resolved spectrum and the energy-
dependent third peak in the pulsar’s light curve. 
    However, when we tried to apply this model to the Geminga pulsar, we found that when the 
energy of the photons exceeded the cutoff energy, the spectrum dropped faster than expected, which 
means that if this model is used, a flux of above ~ GeV photons will be underestimated. We 
introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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Here we have five spectral parameters, C, 𝐵𝐵1, 𝐵𝐵2, 𝜌𝜌0̅̅ ̅, and F. Combining these with the inclination 
angle and the viewing angle, one report (Wang et al. 2011) found that there are a total of seven 
parameters that we need to fix for the spectrum. They applied this model to the Vela pulsar and 
found that the model could successfully explain the phase-resolved spectrum and the energy-
dependent third peak in the pulsar’s light curve. 
    However, when we tried to apply this model to the Geminga pulsar, we found that when the 
energy of the photons exceeded the cutoff energy, the spectrum dropped faster than expected, which 
means that if this model is used, a flux of above ~ GeV photons will be underestimated. We 
introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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Here we have five spectral parameters, C, 𝐵𝐵1, 𝐵𝐵2, 𝜌𝜌0̅̅ ̅, and F. Combining these with the inclination 
angle and the viewing angle, one report (Wang et al. 2011) found that there are a total of seven 
parameters that we need to fix for the spectrum. They applied this model to the Vela pulsar and 
found that the model could successfully explain the phase-resolved spectrum and the energy-
dependent third peak in the pulsar’s light curve. 
    However, when we tried to apply this model to the Geminga pulsar, we found that when the 
energy of the photons exceeded the cutoff energy, the spectrum dropped faster than expected, which 
means that if this model is used, a flux of above ~ GeV photons will be underestimated. We 
introduced the non-stationary model to solve this problem. We believe that the structure of the outer 
gap is not stationary, but changes from time to time. In this case, the Poisson equation needs to add 
a dimension for time, and by solving the time-dependent Poisson equation, this can be the model we 
are looking for. However, solving time-dependent Poisson equations is very complicated. In a 
simple case, we can assume a distribution for one of the spectral parameters proposed above. For 
one chosen parameter, we can assume a power-law distribution, 𝑃𝑃 ∝ 𝐴𝐴 ∙ 𝑥𝑥−𝛼𝛼, where 𝑥𝑥 represents 
the parameter, A is a normalization factor, 𝛼𝛼 is the power index decided by fitting the spectrum, 
and P is the weighting factor of a certain value of 𝑥𝑥. For each of the spectra with different 𝑥𝑥, we 
add the parameters together with the weighting factor and we can obtain the spectrum of the non-
stationary model. 
 
  2.2 Inverse-Compton Scattering in Outer Gap 
     Although to some degree the non-stationary model can explain the spectral property of 
gamma ray pulsars, we noticed that for some very powerful pulsars like the Geminga pulsar there 
were difficulties. Ng et al. (2014) discovered that besides synchrotron radiation from secondary 
pairs in the outer gap, there is another way to produce X-ray emission for millisecond pulsars with 
large magnetic fields: Inverse-Compton Scattering between the radio emission and the primary 
particles in the outer gap. According to their study, as the radio, X-ray, and gamma ray emission 
regions are likely to be at the same positions, so the radio waves emitted from the outer gap can, 
then, scatter with the primary particles with ultra-relativistic energy. To compare this energy with 
the curvature radiation from the outer gap, we may argue as follows. 
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We can conclude from this equation that the flux predicted by Inverse-Compton Scattering has 
about the same magnitude as the curvature radiation, and thus is observable for the pulsars. To 
calculate the Inverse-Compton Scattering spectrum, Ng et al. (2014) considered the scattering 
between the outwards primary particles and the outwards radio waves. The radio emission region is 
assumed to be just above the outer gap; for each particle, the power per unit energy per unit solid 
angle of the Inverse-Compton scattering is 
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Here 𝑑𝑑𝜎𝜎′/𝑑𝑑Ω′ is the Klein-Nishina cross section, 𝜃𝜃0~√2𝑓𝑓𝑒𝑒𝑟𝑟𝑔𝑔 is the collision angle between the 
particles and the radio photons, 0 < 𝜃𝜃1 < 1/𝛾𝛾 is the angle between the direction of the particle 
motion and the direction of the scattered photons, and 𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑 is the radio spectrum. 

As we can see from Eq. (8), the spectrum of Inverse-Compton Scattering relies a lot on the 
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radio spectrum. Although this spectrum is currently unknown, it is suggested that at a low 
frequency of less than 1 GHz, there will be a turnover point in the spectrum at around 100 MHz for 
millisecond pulsars (Kuzmin & Losovsky 2001); we set this frequency as the turnover value. After 
comparing the theoretical results with the observations, we here assume a broken power-law radio 
spectrum: 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴 {
( 𝜐𝜐
100)

𝑟𝑟1𝑒𝑒−(𝜐𝜐/𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)for100MHz ≤ 𝜐𝜐 ≤ 1GHz
( 𝜐𝜐
100)

𝑟𝑟2for𝜐𝜐 < 100MHz
                (9) 

We also set the spectral indexes a1=-2.7 and a2=0.5 according to observations. A is a normalization 
factor we select; it can vary by a factor of a few, because the exact pattern of the radio emission is 
unknown. 
 
3. RESULTS FOR GEMINGA PULSAR 

In this section, we apply our model to the Geminga pulsar. We chose to give a power-law 
distribution to the charge density, 𝜌𝜌0̅̅ ̅ in Eq. (5). In the previous study we found that the Geminga 
pulsar is very powerful, which means that it needs a large outer gap to provide its emission, and 
thus the fitted value of the fractional gap size (f) is very large. So, we decided not to change the gap 
size in this model and only assigned the power-law distribution to the charge density 𝜌𝜌0̅̅ ̅. We first 
decided on a set of parameters that fitted the best of the observed phase-averaged spectrum; we then 
changed 𝜌𝜌0̅̅ ̅. The other parameters are shown in Table 1. By fitting the weighted phase-averaged 
spectrum, we chose the power index 𝛼𝛼 = 0.8. The relation between 𝜌𝜌0̅̅ ̅ and the weight factors is 
shown in Fig. 1. The weighted phase-averaged spectrum is shown in Fig. 2. 

In Fig. 3, the Inverse-Compton scattering spectra are presented individually. When combining 
the Inverse-Compton scattering spectrum with the curvature radiation, ( Author’s confirm 
required.) we add only the part above 1 GeV. We can see that, generally, our results fit the observed 
data very well. 
 
4. DISCUSSION 

In the beginning we believed that the high energy emission of the Geminga pulsar would be 
explained by the non-stationary model; however, from the results it is obvious that this is far from 
the reality. Different distribution patterns of selected parameters may lead to even better results; 
however, if we still want to undertake a detailed study of this problem, we cannot avoid solving a 
time-dependent Poisson equation. 

It is argued that most photons emitted from the gap are from above the null charge surface, as 
shown in the results above; however, fellow researchers have predicted that the inner boundary of 
the gap can extend inwards (Takata et al. 2004), which may also be the reason for the lack of high 
energy (above 3 GeV) photons. 
 
5. CONCLUSION 

In this paper, we discussed the non-stationary three dimensional two-layer outer gap model and 
used it to explain the high energy emission (above approximately 3 GeV) of the Geminga pulsar, 
observed by Fermi-LAT. The outer gap consists of a main acceleration region and a screening 
region, as studied by Wang et al. (2011); we have five spectral parameters. However, we extended 
the model, making it non-stationary. We assigned a power-law distribution to one of the spectral 
parameters and, for the Geminga pulsar, we decided that this parameter would be the charge density. 
We found that this method did not create a sufficient number of high energy photons, so we added 
an Inverse-Compton Scattering component to the model. This process can produce sufficient high 
energy photons, as has been shown above. 
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Table 1. Parameters used in the non-stationary three-dimensional 
outer gap model to fit the phase-averaged spectrum, except for the 
parameter we assigned to the probability distribution, i.e. the charge 
density

Parameters Values
Inclination Angle 116°

Viewing Angle 87°
Period 0.237 s

Distance 0.25 kpc
Magnetic Field 1.59×1012 G

C (in Eq.(3)) 0.99
B1 (in Eq. (4)) 0.92
B2 (in Eq. (5)) 0.7
F (in Eq. (6)) -55°
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spectrum is shown in Fig. 2.

In Fig. 3, the combined spectrum of Inverse-Compton 
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patterns of selected parameters may lead to even better 

results; however, if we still want to undertake a detailed 

study of this problem, we cannot avoid solving a time-

dependent Poisson equation.

It is argued that most photons emitted from the gap are 

from above the null charge surface, as shown in the results 

above; however, fellow researchers have predicted that the 

inner boundary of the gap can extend inwards (Takata et 

al. 2004), which may also be the reason for the lack of high 

energy (above 3 GeV) photons.

5. CONCLUSION

In this paper, we discussed the non-stationary three 

dimensional two-layer outer gap model and used it to 

explain the high energy emission (above approximately 

3 GeV) of the Geminga pulsar, observed by Fermi-LAT. 

The outer gap consists of a main acceleration region and 

a screening region, as studied by Wang et al. (2011); we 

have five spectral parameters. However, we extended the 

model, making it non-stationary. We assigned a power-law 

distribution to one of the spectral parameters and, for the 

Geminga pulsar, we decided that this parameter would be 

the charge density. We found that this method did not create 

a sufficient number of high energy photons, so we added an 

Inverse-Compton Scattering component to the model. This 

process can produce sufficient high energy photons, as has 

been shown above.
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Fig. 1. Distribution of charge density used in the non-stationary three-
dimensional outer gap model.

Fig. 3. Phase-averaged spectrum of Geminga pulsar. The blue line and 
the dots with error bars are the same as those in Fig. 2. The red line is the 
combined spectrum of the outer gap model and the Inverse-Compton 
Scattering model.

Fig. 2. Phase-averaged spectrum of Geminga pulsar. The blue line is the 
model fitting results for the non-stationary three-dimensional two-layer 
outer gap model; the dots with error bars are the observed spectrum.
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