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Abstract
This study was to investigate the effect of salt stress on physiological characteristics such as plant growth, photosynthesis, 

solutes related to osmoregulation of Beta vulgaris. A significant increase of dry weight was observed in 50 mM and 100 

mM NaCl. The contents of Chl a, b and carotenoid were lower in NaCl treatments than the control. On 14 day after NaCl 

treatment, photosynthetic rate (PN), the transpiration rate (E) and stomatal conductance of CO2 (gs) were reduced by NaCl 

treatment. On 28 day after NaCl treatment, the significant reduction in gs and E was shown in NaCl 200 mM. However, PN 

and water use efficiency (WUE) in all NaCl treatments showed higher value than that of control. Total ion contents (TIC) 

and osmolality were higher than the control. On 14 day after treatment, the contents of proline (Pro) increased signifi-

cantly in 200 mM and 300 mM NaCl concentration compared with control, whereas on 28 day in all treatments it was low-

er than that of the control. The contents of glycine betaine (GB) increased with the increase of NaCl concentration. The 

contents of Na+, Cl-, GB, osmolality and TIC increased with the increase of NaCl concentrations. These results suggested 

that under severe NaCl stress conditions, NaCl treatment did not induce photochemical inhibition on fluorescence in the 

leaves of B. vulgaris, but the reduction of chlorophyll contents was related in a decrease in leaf production. Furthermore, 

increased GB as well as Na+ and Cl- contents resulted in a increase of osmolality, which can help to overcome NaCl stress.
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INTRODUCTION

Many parts of the world are effected by salt (Munns 

and Tester 2008), which is known as one of the main envi-

ronmental constraints that are affecting the productivity 

of crops and plants (Munns 2002). Among various envi-

ronmental stresses, excessive salinity in soil and ground-

water suppresses plant growth, causes decrease in net 

photosynthesis, reduces vitality of enzymes that control 

metabolism, and accelerates production of harmful ac-

tive oxygen species in plant cells (Cheeseman 1988, Bor-

sani et al. 2001, Gill and Tuteja 2010). Salt constrains plant 

growth largely in three ways. The first is water deficiency 

caused by reduced water potential in soil around roots. 

The second is toxic effect of ions caused by excessive ab-

sorption of Na+ and Cl-. The last is ionic imbalance due 

to constraints in transportation and absorption of ions 

(Marschner 1995). Adaptive response of plants to salt can 

be divided broadly into the exclusion or accumulation of 

salts. Salt exclusion can be observed mainly in monocot 
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10 cm x height 15 cm) filled with vermiculite. This experi-

ments were conducted in greenhouse where mean tem-

perature was maintained about day (14 h, 25°C), night (10 

h, 18°C). Plants were irrigated 200 ml with Hoagland’s so-

lution and four different NaCl concentrations (0, 50, 100, 

200 and 300 mM) every day for 45 days. 

Measurement of plant water content and inor-
ganic ions

After measuring the fresh weight (FW), leaf samples 

were dried in an oven at 70°C for 3 days to determine dry 

weight (DW). Plant water (PW) content was determined 

as the difference between the FW and DW. The dried plant 

material was ground to a homogeneous powder and ex-

tracted with 95°C distilled water for 1 h, then the sample 

was filtered with a GF/A filter (4.7 cm, Whatman, UK). In-

organic cations (Na+, K+, Ca2+ and Mg2+) were determined 

by inductively coupled plasma atomic emission spectros-

copy (ICP-AES) (Optima7300DV; Perkin Elmer, Waltham, 

MA, USA). The chloride content was measured using a 

chloride titrator (Titrators DL 50; Mettler Toledo Inc., Co-

lumbus, OH, USA).

Measurement of total ions

Total ion contents (calculated as NaCl equivalents) 

were determined using a electrical conductivity instru-

ment (Mettler Check Mate 90; Mettler Toledo Inc.).

Measurement of water-soluble carbohydrates 
and osmolality

Total soluble carbohydrates of the plants were assayed 

using the phenol-sulfuric acid method (Chaplin 1994). 20 

μL of plant extract was mixed with 580 μL of distilled wa-

ter, 400 μL of 5% phenol, and 400 μL of sulfuric acid, and 

the solution was allowed to stand for 10 min before being 

shaken vigorously. Total carbohydrates were quantified 

by determining the absorbance at 490 nm by using a UV 

mini 1240 spectrophotometer (Shimadzu, Kyoto, Japan) 

after 30 more minutes. Glucose (2–40 μg in 200 μL) was 

used as a standard solution.

Osmolality was measured by cryoscopy using an Mi-

cro-Osmometer 3MO (Advanced Instruments, Needham 

Heights, MA, USA). 

Measurement of Pro 

Dried leaves (0.5g) were extracted in 3% sulphosala-

plants while salt accumulation can be observed normally 

in dicotyledonous halophytes. Most halophytes survive 

by developing resistance to salt stress through two meth-

ods. One method is to remove accumulated salt from 

their bodies by forming salt glands as well as trichomes, 

special epidermal structure. The other is to dilute ab-

sorbed salt ion by increasing water content through the 

shape and structural changes of cell, and by accumulating 

absorbed salt in vacuole (Reimold and Queen 1974, Jeffer-

ies et al. 1979, Reimann and Breckle 1988, Breckle 1990). 

Species resistant to saline conditions increase concen-

tration of compatible solutes in cytoplasm to carry out a 

process called osmoregulation, which plays a crucial role 

in the adaptation of the plants under saline environment. 

Representative compatible solutes are amino acids (esp. 

proline, Pro), betaines, low-molecular-weight carbohy-

drates, and sugar alcohols (Stumpf 1984, Smirnoff 1993). 

Under salt or water stress, many Chenopodiaceae plants 

are known to accumulate Pro and glycine betaine (GB) 

used as osmolytes for osmoregulation (Storey and Jones 

1979). Salt accumulation in irrigated soil especially in 

arid and semiarid region is known as the primary factor 

of reduced crop productivity (Serrano 1996, Volkmar et al. 
1998). In general, decreased crop productivity due to vari-

ous environmental stress including salt is related to de-

crease in photosynthetic performance (Ziska et al. 1990). 

Salt reduces the photosynthetic ability of plant, by affect-

ing one or more processes in connection with photosyn-

thesis. Environmental stresses decrease light energy that 

plants use (Singh and Dubey 1995), reduce the amount of 

chlorophyll or destroy the structure of chloroplast, dam-

age photosystem II (Downton et al. 1985), reduce stoma-

tal conductance by closing stomatal pore and eventually 

reduce the amount of fixed CO2 (Seemann and Sharkey 

1986, Singh and Dubey 1995).

This research was performed to investigate the physio-

logical changes of leaf beet (Beta vulgaris) through growth 

response, solute pattern and photosynthetic activity as a 

part of adaption under saline conditions. 

MATERIAL AND METHODS

Plant material and growth conditions

Seeds of B. vulgaris L. var. flavescense DC. were pur-

chased from Danong Co. in Korea. After washing 5-6 

times the seeds of B. vulgaris in distilled water, they were 

allowed to germinate for 5 days at 26°C incubator. Germi-

nated plants were transferred to a plastic pot (diameter 
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Measurement of chlorophyll contents

The leaf samples for chlorophyll and carotenoid were 

extracted by dimethyl sulfoxide (DMSO) at 60°C for 24 h. 

The contents of chlorophyll a, chlorophyll b and carot-

enoid were estimated from absorbance at 645 nm, 663 

nm and 480 nm with UV mini-1240 spectrophotometer 

(Shimadzu).

Statistical analyses

Data were analyzed by analysis of variance (ANOVA) 

using SPSS ver. 19.0 (SPSS Inc., Chicago, IL, USA). Graphs 

show means with standard deviation (SD). A Duncan’s 

multiple range test was carried out to determine signifi-

cant differences (P < 0.05, N = 5) among the groups.

RESULTS AND DISCUSSION

Growth and plant water content

DW change and the ratio of plant water content to DW 

in beet leaves after salt treatments are shown in Fig. 1. A 

great difference could not be observed in dry weight be-

icylic acid and the homogenate filtered through a 0.45 μm 

pore size CF/C (Whatman). Filtrate of 2 ml was reacted 

with 2 ml of acid ninhydrin reagent and and glacial acetic 

acid of 2 ml in a test tube for 1 h at 100°C and the reac-

tion terminated in an ice bath. The reaction mixture was 

extracted with 4 ml of toluene and mixed vigorously with 

a vortex mixture for 15-20s. The chromophore containing 

toluene was aspirated from the aqueous phase, warmed 

to room temperature and the absorbance measured at 

520 nm using toluene as blank. Pro concentration was 

calculated from a standard curve using L-Pro (Bates et al. 

1973).

Measurement of GB

The extract was diluted with 2N H2SO4 (1 : 1 /v) and 0.5 

mL of the acidified extract was cooled in ice water for 1 

h. Later, 0.2 mL of cold potassium tri-iodide solution was 

added and mixed by vortex, and the tubes were stored at 

4°C for 15 min and centrifuged at 10,000 rpm for 15 min. 

The supernatant was aspirated with a fine-tipped glass 

tube. The periodide crystals were dissolved in 9 mL of 

1,2-dichloroethane with vigorous shaking. After 2.5 h, the 

absorbance was determined at 365 nm in a spectropho-

tometer. GB (200 μg in 1 N H2SO4 1000 mL) was used as a 

standard solution (Grieve and Grattan 1983).

Leaf gas-exchange measurements

Photosynthesis of the plant leaves was determined us-

ing a LCi Portable Photosynthesis System (ADC BioScien-

tific LTd, Hertfordshire, UK), and then was stabilized for 

five minutes to one-minute interval was measured five 

times.

Chlorophyll fluorescence

Before measuring chlorophyll fluorescence, leaves were 

put in dark-adapted state for 20 min using light exclusion 

clips and then minimal fluorescence in dark-adapted 

leaves (F0), maximal fluorescence (Fm), maximum pho-

tochemical quantum yield of photosystem II (Fv/Fm), ef-

fective photochemical quantum yield of photosystemⅡ 

(Y(II)), quantum yield of light-induced non photochemi-

cal fluorescemce quenching ( Y(NPQ)) and quantum yield 

of non-regulated heat dissipation and fluorescence emis-

sion (Y(NO)) were measured using a Portable Chlorophyll 

Fluorometer PAM-2500 (Heinz Walz GmbH, Effeltrich, 

Germany).
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Fig. 1. Effect of NaCl treatments (0, 50, 100, 200 and 300 mM) on (a) 
leaf dry weight and (b) the ratio of plant water to dry weight in leaves of 
Beta vulgaris. Data represent mean value of five replicates with standard 
deviation. The different letters indicate significant differences among 
treatments tested with one-way ANOVA and Duncan's multiple range test 
(P < 0.05).
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It is considered that beets overcome salt stress without a 

definite inhibition to growth up to 200 mM.

Chlorophyll fluorescence

In the NaCl treated group, a large difference was not 

observed in F0, Fm and Fv/Fm, which represent quantum 

yield of photosystem II’s photochemical reaction to maxi-

mum photosynthesis (Table 1). Chlorophyll fluorescence 

and electron transport in leaves of beets were hardly af-

fected by salt treatmemts, displaying a high Fv/Fm value 

of over 0.81 in all experimental groups treated with NaCl. 

Fv/Fm is used not only to measure photosynthetic 

electron transport ability, but also as an indicator of envi-

ronmental stresses (Schansker and van Rensen 1999). The 

Fv/Fm ratio of plants in stress-free environments is gen-

erally known to be 0.75-0.85 (Peterson et al. 1988). Typi-

cally plants tend to show an increase of F0 and decrease 

of Fm when they are stressed. However, stressed plants 

possess a mechanism that relaxes the energy of excited 

electrons derived from chlorophyll by releasing the en-

ergy as a form of heat and light in order to suppress the 

generation of active oxygen species, which brings it back 

to the ground state. In this way, the photosynthetic ap-

paratus in leaves is protected. This is the photoprotection 

mechanism of plants, called non-photochemical quench-

ing (NPQ) (Niyog 1999). The results of this experiment did 

not show any significant difference between the control 

and experimental groups in terms of the values of F0, Fm, 

Fv/Fm, Y(NO), Y(II) and Y(NPQ). Judging from the results, 

NaCl treated beet plants perform photosynthesis effec-

tively without significant salt effect. It is considered that 

beets under salt stress is not damaged to photosystem.

tween the control and treatment groups until after the 

first 14 days salt treatments. However, DW showed a sig-

nificant difference at 28 days after salt treatment. The DW 

of the two treatments of 50 mM and 100 mM NaCl were 

more than that of the control. When treated with 200 mM 

NaCl, however, DW was slightly lower than the control, 

and plant growth was significantly inhibited at 300 mM 

NaCl treatment (Fig. 1). Until 14 days after treatment, the 

ratio of plant water content to DW in beet leaves was in-

creased at 50 mM NaCl and then gradually decreased, and 

showed the lowest value at the 300 mM treatment. Over 

100 mM NaCl treatments, the ratio of plant water content 

to DW in leaves of the 28 day treatment increased due to 

continued salt stress, compared to those given the 14 day 

treatment (Fig. 1).

Compared with most crops which generally exhibit 

low salt tolerance, many chenopodiaceous plants pos-

sess a somewhat higher salt tolerance (Choi et al. 2014). 

For example, Suaeda japonica and Salicornia herbacea 

belonging to the Chenopodiaceous plants that grow on 

salt marshes displayed high salt resistance even at 400 

mM NaCl treatments, showing an increase of DW (Kim et 

al. 2002). In the case of salt sensitive plants, a rapid de-

crease in the DW and fresh weight of roots and leaves was 

observed at 200 mM NaCl (Greenway and Munns 1980). 

Sugar beets, which belong to the same genus such as 

beets showed sensitive growth response with the increase 

of salinity during germination and initial stages of growth. 

However, it is known to possess somewhat salt resistance, 

showing high ability of osmotic adjustment though the 

accumulation of solutes such as inorganic ions, Pro and 

GB (Gzik 1996, Ghoulam and Fares 2001). The beets used 

in this research also displayed a growth response similar 

to the control group even under 200 mM NaCl treatments. 

Table 1. Characteristics of chlorophyll fluorescence (F0, Fm, Fv/Fm, Y(II), Y(NPQ) and Y(NO)) under NaCl stress.

NaCl (mM) Harvest F0 Fm Fv/Fm Y(II) Y(NPQ) Y(NO)

0 1st 0.22 ± 0.00 1.23 ± 0.05 0.82 ± 0.01 0.53 ± 0.04 0.16 ± 0.05 0.31 ± 0.03

2nd 0.21 ± 0.02 1.15 ± 0.13 0.82 ± 0.01 0.52 ± 0.10 0.18 ± 0.05 0.31 ± 0.06

50 1st 0.21 ± 0.01 1.18 ± 0.02 0.82 ± 0.00 0.45 ± 0.06 0.28 ± 0.08 0.27 ± 0.03

2nd 0.22 ± 0.01 1.22 ± 0.02 0.82 ± 0.01 0.47 ± 0.03 0.24 ± 0.04 0.29 ± 0.02

100 1st 0.21 ± 0.02 1.16 ± 0.07 0.82 ± 0.01 0.49 ± 0.09 0.24 ± 0.08 0.28 ± 0.02

2nd 0.21 ± 0.01 1.17 ± 0.04 0.82 ± 0.01 0.43 ± 0.03 0.28 ± 0.02 0.28 ± 0.02

200 1st 0.20 ± 0.02 1.10 ± 0.10 0.82 ± 0.01 0.54 ± 0.06 0.19 ± 0.08 0.27 ± 0.02

2nd 0.22 ± 0.02 1.18 ± 0.05 0.82 ± 0.01 0.47 ± 0.05 0.27 ± 0.05 0.26 ± 0.01

300 1st 0.20 ± 0.01 1.10 ± 0.07 0.82 ± 0.00 0.53 ± 0.07 0.22 ± 0.07 0.25 ± 0.01

2nd 0.20 ± 0.01 1.05 ± 0.09 0.81 ± 0.01 0.59 ± 0.04 0.17 ± 0.04 0.25 ± 0.01

Fo, minimal fluorescence in dark-adapted leaves; Fm, maximal fluorescence in dark-adapted leaves; Fv/Fm, maximum photochemical quantum yield of PS II; 
Y(II), effective photochemical quantum yield of PS II; Y(NPQ), quantum yield of light-induced non-photochemical fluorescence quenching; Y(NO), quantum 
yield of non-regulated heat dissipation and fluorescence emission.
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at concentrations over 100 mM on the 28th day (Fig. 2). 

Carotenoid is known to play two roles in photosynthe-

sis: light harvesting and photoprotection (Hopkins and 

Hüner 2004). With respect to concentration level of NaCl 

treatment, carotenoid content was lower in all experi-

mental groups than in control groups (Fig. 3). In general, 

chlorophyll content decreased in leaves of NaCl-stressed 

plants (Meloni et al. 2003). Decreased Chl a, Chl b and 

carotenoid contents in leaves of beets treated with NaCl 

perhaps indicate that NaCl hinders the synthesis of chlo-

rophyll and carotenoid in beet.

Photosynthesis

With the increase of NaCl concentration, both stoma-

tal transpiration rate and stomatal conductance showed 

a tendency to decrease significantly, while water use ef-

ficiency displayed a tendency to increase (Fig. 4). Transpi-

ration usually occurs through stomata, so that the degree 

of stomatal opening and closing is of absolute impor-

tance in water retention. Stomatal conductance, which is 

diffusion of water into the atmosphere, is influenced by 

many environmental factors such as light intensity, vapor 

pressure deficit, concentration of carbon dioxide, tem-

perature and relative humidity (Sim and Han 2003). With 

decreased stomatal conductance, stomatal transpiration 

rate decreases and photosynthetic performance is af-

fected. Photosynthesis in higher plants became especially 

affected when plant was provided with less than available 

water. Thus, abscisic acid (ABA) content in plants is in-

creased. With the change in ABA content, stomata begins 

to close up, which affects the absorption of carbon diox-

ide (Salisbury and Rose 1992, Yu and Bae 2004). 

Fourteen days after NaCl treatment, an obvious dif-

ference in transpiration rate and stomatal conductance 

between control group and experimental groups was ob-

served. The difference of the 1st harvest was more signifi-

cant than the 28th day. With NaCl treatment, a decrease 

in transpiration rate and stomatal conductance appeared 

before photosynthesis. As a result, the beets decreased 

stomatal conductance and transpiration rate in order to 

reduce water loss within the plant body under NaCl stress. 

Therefore, appropriate water-carbon dioxide exchange 

could not take place, hindering photosynthetic perfor-

mance.

Osmotic concentration, total ion and inorganic 
cation content

Ion uptake and compartmentalization are crucial not 

Chlorophyll a, b and carotenoid content

Chlorophyll a (Chl a) content of beets displayed a ten-

dency to decrease in accordance with the increase of 

salinity. With lengthened treatment time, a difference in 

content was not observed up to 200 mM, but a decrease 

in Chl a content was observed at 300 mM. Up until the 

14th day, Chl b content decreased somewhat, but did not 

display a great change. However, a decrease was observed 
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chlorophyll a and (b) chlorophyll b contents in leaves of Beta vulgaris. 
Data represent mean value of five replicates with standard deviation. The 
different letters indicate significant differences among treatments tested 
with one-way ANOVA and Duncan's multiple range test (P < 0.05).
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only for normal growth but also for growth under saline 

condition (Adams et al. 1992) because the stress disturbs 

ion homeostasis. The total osmotic concentration and 

ion content accumulated in beet leaves increased with an 

increase in salinity (Fig. 5). This had a connection to an 

increased influx of Na+ and Cl- ions. In order to maintain 

water potential of leaves under saline conditions, the beet 

increases osmotic concentration in the body. The study 

shows that in the beginning of salt stress, inorganic ions 

constituted the majority of osmotic concentration, and 

then, organic solutes such as GB were accumulated in the 

plant body. S. asparagoides and S. maritime, which are also 

Chenopodiaceous plants that grow in salt marshes, are 

known to use mainly inorganic ions such as Na+ and Cl- in 

order to appropriately maintain osmotic concentration of 

leaves in accordance with the environment they inhabit 

(Choi et al. 2012). Beets, which belong to the Chenopodia-

ceous plant family, are also thought to accumulate mainly 

Na+ and Cl- to use in osmotic adjustment as a response to 

NaCl. Inorganic cation content of beet leaves treated with 

NaCl is shown in Fig. 6. The control group accumulated 

mainly K+ ion among inorganic cations. With an increase 

in NaCl concentration and treatment time, cation content 

in beet leaves increased. Mainly, Na+ ions accumulated in 
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and Hoffmann 2006). As a response to NaCl stress, beets 

overcome ion toxicity by appropriate compartmentaliza-

tion of Na+ ions accumulated in the leaf. At the same time, 

beets increase water content and maintain a balance be-

tween Na+ ions and K+ ions in leaves.

Soluble carbohydrate content

Beets contained a small amount of soluble carbohy-

drates. The smallest change in soluble carbohydrate con-

tent was observed in experimental groups treated with 

50 mM NaCl, while the greatest change was observed in 

experimental groups treated with 300 mM NaCl (Fig. 7). 

As a response to drought or NaCl stress, most plants ac-

cumulate soluble carbohydrates such as sucrose, Gra-

mineous crops and Cyperaceous plants are especially 

known to contain a great amount of sugar (Albert and 

Popp 1978, Stewart et al. 1979, Huetterer and Albert 1993, 

Choo and Albert 1999). A physiological characteristic of 

Salsola collina, a Chenopodiaceous plant that grows in 

coastal sand dunes, is that it holds more soluble carbo-

hydrates compared to other Chenopodiaceous plants 

(Popp and Smirnoff 1995, Choo and Albert 1999, Choi et 

al. 2004). Sugar beet accumulated a great amount of sugar 

in its roots in early stages of growth; and as it grows, the 

amount continuously increased (Kenter and Hoffmann 

2006). In this study, the sugar concentration of beet in-

creased somewhat under NaCl environments, but a small 

amount of soluble carbohydrates was observed in gen-

eral. The reason why a great change in sugar content was 

not observed with NaCl treatment is because carbohy-

drates are not considered to be the beet’s main osmolytes.

the plant body. 14 days after saline treatment, Na+ ion con-

tent in the plant body tended to increase, however, a great 

change was not observed in inorganic cation content 

including that of K+ ions. 28 days after NaCl treatment, 

a remarkable increase in Na+ ion content was observed. 

However, a great difference was not observed in content 

between experimental groups. Due to noticeable increase 

in Na+ ions in experimental groups treated with 300 mM 

NaCl, K+ ion content tended to display a relative decrease.

High salt (NaCl) uptake competes with the uptake of 

other nutrient ions, especially K+, leading to K+ deficiency. 

Increased treatment of NaCl induces increase in Na+ and 

Cl- and decrease in Ca2+, K+, and Mg2+ levels in a number 

of plants (Khan et al. 1999, Aziz and Khan 2001).  In plants 

that cannot remove salt out of the body, absorption of K+ 

and Ca2+ ions is hindered under environments with high 

concentrations of NaCl. At the same time, growth is hin-

dered by the imbalance in inorganic nutrients and ion 

toxicity caused by excessive influx of Na+ ion (Ashraf et al. 
1994). In some plants, excessive Ca2+ ion content in the 

plant body can have a harmful effect, so a low Ca2+ concen-

tration is usually maintained in the cytoplasm. Chenopo-

diaceous plants are especially known to accumulate only 

a small amount of Ca2+ ions in the plant body (Choo and 

Song 1998). Plants adapted to saline environments pos-

sess various physiological control mechanisms: In order 

to avoid NaCl hinderance, plants dilute salt accumulated 

in cells by increasing water content (succulents), emit it 

through salt glands, accumulate in trichome, accumulate 

to the roots or old leaves, and store it in vacuoles (Sha-

bala and Mackay 2011). Sugar beets, a Chenopodiaceous 

plant, accumulates a great amount of K+ and Na+ to use for 

osmotic adjustment during early stages of its growth. As it 

grows, it gradually dilutes accumulated ion concentration 

by increasing water content within the plant body (Kenter 
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not hinder biochemical responses. Rather, it is used to 

maintain cell membrane, to stabilize cell structure, and to 

maintain photosynthetic efficiency (Wang and Showalter 

2004). The accumulation of GB not only has a connection 

to NaCl resistance, but is known to increase NaCl resis-

tance in plants that do not form GB when the supply of 

GB from the outside (Harinasut et al. 1996). In sugar beets 

and spinach, which are Chenopodiaceous plants, forma-

tion of GB in chlorophyll is catalyzed by choline mono-

oxygenase (CMO) and betaine aldehyde dehydrogenase 

(BADH) enzymes as a response to various stress factors 

such as drought and NaCl, and is accumulated in the cy-

toplasm (Sakamoto and Murata 2002). In beets, GB is ac-

cumulated for osmotic adjustment with accumulation of 

inorganic ions such as Na+ and Cl- in the plant body. Thus, 

GB is thought to be the main cytoplasmic osmolyte for os-

motic adjustment in regards to NaCl stress in beets.

These results suggested that under severe NaCl stress 

conditions, NaCl treatment did not induce photochemi-

cal inhibition on fluorescence in the leaves of B. vulgaris, 

but the reduction of chlorophyll contents was related in a 

decrease in leaf production. Furthermore, increased GB 

as well as Na+ and Cl- contents resulted in an increase of 

osmolality, which can help to overcome NaCl stress. In 

conclusion, beet overcomes salt stress without a definite 

hindrance to growth in NaCl environments with up to 

200mM NaCl by accumulating GB and with effective ac-

cumulation of inorganic ions.

By understanding the physiological characteristic of 

beet under salt stress, it may give a clue to solve salt ac-

cumulation problem in agricultural land.
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