
I. INTRODUCTION 
 
Wireless networks are characterized by a fixed spectrum 

allocation policy. However, demand for the frequency 
spectrum is increasing, leading to spectrum scarcity. To 
overcome this scarcity in wireless communication, a cognitive 
radio network has been proposed. In this network, cognitive 
radio users, called secondary users (SU), are allowed to utilize 
the primary user (PU) bands when they are unoccupied but 
must avoid harmful interference with the primary users. To 
achieve this, spectrum sensing is an essential mechanism in 
cognitive radio networks [1]. Various techniques for spectrum 
sensing have been proposed in the literature, including the 
matched-filter technique, cyclostationary detection, and 
energy detection. 

Energy detection is the most popular technique due to its 

simplicity. It does not require any prior information about 
the primary signal, and its sensing speed is fast. However, 
the performance of energy detection is limited by noise 
uncertainty. Furthermore, multipath fading, shadowing, and 
the hidden node problem degrade the performance of single-
user spectrum-sensing techniques [2]. To overcome these 
problems, cooperative sensing was introduced as a solution. 
In this technique, secondary users collaborate to sense the 
unused spectrum and detect a PU signal. Then, with or 
without sharing information about the local decision, they 
forward the local decision results to the fusion center. The 
center then decides the final result according to the decision 
rules applied in the fusion center [3]. Various techniques 
have been proposed to mitigate noise uncertainty such as 
double threshold-based sensing. However, if all the energy 
lies between two thresholds, spectrum sensing will fail [4]. 
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Abstract 
Spectrum sensing in cognitive radio networks allows secondary users to sense the unused spectrum without causing 
interference to primary users. Cognitive radio requires more accurate sensing results from unused portions of the spectrum. 
Accurate spectrum sensing techniques can reduce the probability of false alarms and misdetection. In this paper, a two-stage 
spectrum sensing scheme is proposed for cooperative spectrum sensing in cognitive radio networks. In the first stage, 
spectrum sensing is executed for each secondary user using energy detection based on double adaptive thresholds to determine 
the spectrum condition. If the energy value lies between two thresholds, a fuzzy logic scheme is applied to determine the 
channel conditions more accurately. In the second stage, a fusion center combines the results of each secondary user and uses 
a fuzzy logic scheme for combining all decisions. The simulation results show that the proposed scheme provides increased 
sensing accuracy by about 20% in some cases. 
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Due to the uncertainty in noise power, accurate detection 
becomes impossible, and choosing a suitable threshold in 
spectrum sensing becomes more difficult. 

In this paper, a new two-stage spectrum sensing scheme 
using fuzzy logic for cognitive radio networks is proposed. 
In the first stage, spectrum sensing is executed at the local 
node based on a double adaptive threshold scheme. If the 
measured energy lies between the two thresholds, the actual 
channel condition is decided based on a fuzzy logic scheme 
to mitigate the sensing failure problem. After local spectrum 
sensing is performed, each secondary user sends their local 
decision results to the fusion center. In the second stage, this 
fusion center combines all the local decision results using 
fuzzy logic and gives the final decision.  

 
 

II. RELATED WORK 
 
The first energy detection technique was proposed by 

Urkowitz in 1967 [5]. He proved that energy detection is a 
simple technique and does not require complex computation. 
Despite its simplicity, the performance of energy detection 
is limited by noise uncertainty. In addition, the multipath, 
shadowing, and hidden node problems degrade the 
performance of single-user spectrum-sensing techniques. 
One possible technique to overcome these problems is 
cooperative sensing [3]. The main idea of this technique is 
that secondary users interact with each other to determine 
the availability of a channel after individual measurement of 
the channel. In contrast, the adaptive spectrum sensing 
technique, which is based on the dynamic selection threshold 
using the constant false alarm rate (CFAR) scheme, was 
proposed to enhance the spectrum sensing capability in a 
low signal to noise ratio (SNR) [6]. 

The two threshold sensing technique was introduced to 
mitigate noise uncertainty. However, the problem of a 
“confused region” remains in which all the detected energy 
values lie between two thresholds. Thus, the secondary users 
cannot decide whether the primary users are present or not. 
In this case, the spectrum sensing procedure will fail. In [7], 
the author proposed an “n-ratio” based logic with two 
thresholds. If all the detected values are between the two 
thresholds, the secondary user sends a “no decision” to the 
fusion center, and the fusion center helps the secondary 
users to determine the actual state of the spectrum. In [8], 
the author proposed hierarchical cooperative spectrum 
sensing based on double threshold energy detection. In this 
scheme, if the collected energy value lies between the two 
thresholds, it requires the fusion center to make a final 
decision. The fusion center quantizes the local value into 
four two-bit decisions and combines them to give the final 
decision. In contrast, because the performance degrades 
sharply as the noise uncertainty increases, a dynamic 

threshold algorithm was proposed to combat noise 
uncertainty [9]. In [10], the author solved the sensing failure 
problem at a local node using two-bit quantization. The 
scheme is used to divide the confused region into four equal 
quantization intervals with the same weight. A three 
threshold scheme was proposed to mitigate the confused 
region based on the dynamic threshold factor [11].  

Another approach to research has been to apply fuzzy 
logic to cognitive radio networks. This technique can 
provide a framework to handle ambiguity and vagueness. A 
fuzzy decision chooses the most appropriate access 
opportunity by using cross-layer information, past history, 
and shared knowledge among different devices through a 
knowledge base. Cognitive spectrum sensing based on fuzzy 
logic was presented in [12]. This approach provides good 
sensing performance and high flexibility for decision 
combining at the fusion center. In [13], the author proposed 
a spectrum sensing scheme with fuzzy logic that is applied 
in the local node. In this scheme, the author performs three 
different spectrum sensing techniques simultaneously in the 
local node. Then, the probability of detection (Pd) of each 
technique is used as the input values for a fuzzy inference 
system (FIS). This scheme increases the hardware system 
requirements for the secondary user in order to perform 
three different spectrum sensing techniques. In this paper, 
we propose a new scheme to mitigate the sensing failure 
problem in a confused region by applying fuzzy logic. By 
using this approach, we can improve local spectrum sensing 
without increasing system requirements. In order to achieve 
high accuracy detection, all the local decisions collaborate 
in a cooperative sensing scheme using fuzzy logic for 
decision combining.  

 
 

III. PROPOSED SPECTRUM SENSING 
SCHEME 

 
The spectrum sensing scheme used in this paper is based 

on the double adaptive threshold scheme. The consideration 
for using energy detection with double adaptive thresholds 
is that this scheme can mitigate uncertainty in noise power. 
In the conventional single threshold case, the false alarm 
probability (𝑃𝑃𝑓𝑓) and 𝑃𝑃𝑑𝑑 can be expressed as 

 

𝑃𝑃𝑓𝑓 = 𝑄𝑄 �𝜆𝜆−𝑁𝑁𝜎𝜎𝜔𝜔
2

�2𝑁𝑁𝜎𝜎𝜔𝜔4
� ,               (1) 

𝑃𝑃𝑑𝑑 = 𝑄𝑄 � 𝜆𝜆−𝑁𝑁�𝜎𝜎𝑠𝑠2+𝜎𝜎𝜔𝜔2 �

�2𝑁𝑁�𝜎𝜎𝑠𝑠2+𝜎𝜎𝜔𝜔2 �
2
� ,            (2) 

 
where 𝑄𝑄(. )  denotes the Gaussian tail probability Q-
function, and 𝜎𝜎𝜔𝜔2 , and 𝜎𝜎𝑠𝑠2 are the noise variance and the 
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average signal power, respectively. Based on the given 
target false alarm probability, the threshold (𝜆𝜆)  can be 
determined as  
 

𝜆𝜆 =  𝑄𝑄−1(𝑃𝑃𝑓𝑓) × �2𝑁𝑁𝜎𝜎𝜔𝜔4 + 𝑁𝑁𝜎𝜎𝜔𝜔2 .        (3) 
 
According to the single threshold, we can derive two 

different thresholds, the lower threshold (𝜆𝜆1) and the higher 
threshold ( 𝜆𝜆2) by applying min-max noise variance 
(𝜎𝜎2 ∈[1

𝜌𝜌
𝜎𝜎𝜔𝜔2 , 𝜌𝜌𝜌𝜌𝜔𝜔2]). Two thresholds can be determined as 

 

 𝜆𝜆1 =  𝑄𝑄−1(𝑃𝑃𝑓𝑓) × �2𝑁𝑁 𝜌𝜌� 𝜎𝜎𝜔𝜔4 + 𝑁𝑁 𝜌𝜌� 𝜎𝜎𝜔𝜔2 ,      (4) 

 𝜆𝜆2 =  𝑄𝑄−1(𝑃𝑃𝑓𝑓) × �2𝑁𝑁𝑁𝑁𝜎𝜎𝜔𝜔4 + 𝑁𝑁𝑁𝑁𝜎𝜎𝜔𝜔2 ,       (5) 
 

where 𝜌𝜌 > 1 is the parameter that determines the amount of 
noise uncertainty. 

The overall procedure of the proposed scheme is shown in 
Fig. 1. Each process in Fig. 1 is described below.  
 

A. First Stage (Local Decision) 
 

(a) Each secondary user senses the primary user’s signal 
and decides based on a double adaptive threshold. If the 
energy is larger than 𝜆𝜆2, it will be decided as H1 (Spectrum 
Occupied). If it is lower than 𝜆𝜆1, it will be decided as H0 

(Spectrum Free). 
 

 
Fig. 1. Two-stage spectrum sensing scheme using fuzzy logic for 
cognitive radio networks. 

 
Fig. 2. Two-bit quantization in a confused region with a linguistic 
variable. 
 
 

  
(a)                            (b) 

 

 
(c)  

Fig. 3. Membership function for the first stage. (a) MF of the 1st 
antecedent for the first stage (energy). (b) MF of the 2nd antecedent for 
the first stage (SNR). (c) MF of consequent for the first stage (possible of 
present PU). 
 
 

(b) If the energy lies in a confused region, the secondary 
users will use a fuzzy logic scheme to decide the actual 
conditions. Inside the FIS, the confused region is divided 
into four equal regions using two-bit quantization 
(𝜆𝜆1 ~ ST1,  ST1 ~ ST2, ST2 ~ ST3, ST3 ~ 𝜆𝜆2) , as shown in 
Fig. 2, where ST1, ST2, ST3 are the sub-thresholds (ST), and 
these values can be obtained as 

 

Range = 𝜆𝜆2  − 𝜆𝜆1
4

 ,               (6) 
 

ST= �
𝑆𝑆𝑆𝑆1 =  𝜆𝜆1  +  Range
𝑆𝑆𝑆𝑆2 = 𝑆𝑆𝑆𝑆1  +  Range

 𝑆𝑆𝑆𝑆3 =  𝑆𝑆𝑆𝑆2  +  Range
.         (7) 

 
The membership functions (MF) for two-bit quantization, 

SNR and F1, are shown in Fig. 3. In Table 1, we present the 
fuzzy rule-based system used for rule evaluation in the first 
stage. 
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Table 1. Rule-based system for the first stage 

SNR Energy F1 

Low Worst Low 
Low Low Quite-low 
Low Medium Quite-low 
Low High Medium 

Medium Worst Quite-low 
Medium Low Quite-low 
Medium Medium Medium 
Medium High Quite-high 

High Worst Quite-low 
High Low Medium 
High Medium Quite-high 
High High High 

 
 

(c) According to the process for FIS in the first stage, 
shown in Fig. 1, the fuzzifier converts each crisp input value 
to a linguistic variable using the membership function. The 
output for the fuzzification process is the fuzzy input values. 
Using the If-Then type, fuzzy rules convert the fuzzy input 
to fuzzy output and the defuzzifier converts the degrees of 
membership of the output linguistic variables (fuzzy output) 
into numerical values using the centroid of area (COA) as 
the defuzzification method [14]. The range value of the 
energy in the membership function is an assumed value 
because it is recalculated when the measured energy lies in a 
confused region. A detailed description of the decision 
making process with the fuzzy logic scheme for the first 
stage is described as follows: 

• First, the crisp value is input to the fuzzy inference system. 
• The ranges of the energy membership function are 

recalculated using Eqs. (6) and (7). 
• The crisp value is converted to a fuzzy input value by the 

fuzzifier using the membership function. In this process, 
the two values (degree of membership (µ) and linguistic 
value) for each crisp input are obtained. 

• Each fuzzy input is evaluated in the rule inference engine 
using a fuzzy rule-based system. Suppose we have two 
input variables X, Y and one output variable Z, and their 
respective linguistic attributes are X1, X2 for X; Y1, Y2 
for Y; and Z1, Z2 for Z. Then the two defining rules (for 
example) are 

If X is X1 AND Y is Y1, then Z is Z1. 
If X is X2 OR Y is Y2, then Z is Z2. 

Also, let x, y be the exact values of X, Y. The first step is 
to calculate the truth value (𝛼𝛼𝑖𝑖) for each of the given 
rules: 

𝛼𝛼1 = µ𝑋𝑋1(𝑥𝑥)  ∧  µ𝑌𝑌1(𝑦𝑦),            (8) 

𝛼𝛼2 = µ𝑋𝑋2(𝑥𝑥) ∨  µ𝑌𝑌2(𝑦𝑦).            (9) 
 

• Before performing the defuzzification process, the 
implication process for the two degrees of membership 
value from the previous step is needed. In this step, the 
max-min composition method for the implication process 
is used. The first step is to calculate the modified 
membership function (µ′)  for the conclusion output 
recommended by each rule by taking the minimum of its 
membership function and the truth value of the IF clause 
as follows: 

 
µ′𝑍𝑍1 = 𝛼𝛼1  ∧  µ𝑍𝑍1,              (10) 

µ′𝑍𝑍2 = 𝛼𝛼2  ∧  µ𝑍𝑍2.              (11) 
 

Finally, the membership function µ𝑧𝑧 for the final output 
of variable Z is calculated by taking the maximum value 
of the modified membership µ′ of all the conclusion 
output by referring to Z: 
 

µ𝑧𝑧 = µ′𝑍𝑍1  ∨  µ′𝑍𝑍2 .             (12) 
 

After the implication process, all the values of Z are 
aggregated by summing all of the values.  

• The last process for the fuzzy inference system is 
defuzzification. By using the COA method [14], the actual 
output for the fuzzy inference system can be derived.  

  

𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ 𝜇𝜇𝑧𝑧,𝑖𝑖(𝑧𝑧)𝑍𝑍𝑖𝑖
𝐾𝐾
𝑖𝑖=1
∑ 𝜇𝜇𝑧𝑧,𝑖𝑖(𝑧𝑧)𝐾𝐾
𝑖𝑖=1

 .            (13) 

 
• The output value is the possibility of a present PU (F1). If 

the F1 value is larger than 𝜆𝜆fuzzy, it is decided as H1; 
otherwise, it is decided as H0.  

 
(d) After performing local spectrum sensing, each 

secondary user sends their local decision results (Pd) to the 
fusion center. In our simulation, it is assumed that there are 
three secondary users collaborating in the cooperative 
sensing scheme. 
 
B. Second Stage (Fusion Center) 

 
The fusion center combines all the local decisions using 

the fuzzy logic scheme. Thus, there are three local decision 
values as crisp input for the fuzzification process. The next 
process also uses the same procedure as point (c) in the 
first stage for the decision combining process. However, 
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for FIS in the second stage, we used the max-product 
implication method as the implication method and the 
middle of maximum (MOM) method as the defuzzification 
method. The defuzzification method for MOM can be 
expressed as 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖
𝑦𝑦

𝑖𝑖 

∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
𝑦𝑦

𝑖𝑖 
          (14) 

 
where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝑦𝑦 is the y-axis value of the  local 
maximum; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑥𝑥  is the x-axis value of the local 
maximum point; and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the vector of the local 
maximum points in the output shape for the defuzzification 
method [15]. Eq. (14) is used to obtain the high output 
probability. The output value of the second stage is the final 
possibility of a present PU (F2). If the F2 value is larger than 
𝜆𝜆fuzzy, it is decided as 𝐻𝐻1, otherwise as 𝐻𝐻0. The mem-
bership functions for the second stage are shown in Fig. 4. 
In Table 2, we present an example fuzzy rule-based system 
that is used for rule evaluation in the second stage where 
there are actually 27 rules in our scheme. 
 
 
Table 2. Example rule-based system for the second stage 

1st SU 2nd SU 3rd SU F2 
Low Low Low Poor 

Medium Low Low Low 
High Low Low Low 
Low Medium Low Low 

Medium Medium Low Medium 
High Medium Low Medium 
Low High High Medium 

Medium High High High 
High High High High 

SU: secondary user. 
 
 
 

   
(a)                           (b) 

Fig. 4. Membership function for the second stage. (a) MF of the 1st, 2nd, 
and 3rd antecedent for the second stage. (b) MF of consequent for the 
second stage (final possibility of present PU). 
 
 

IV. SIMULATION RESULTS AND ANALYSIS  
 
A. Experimental Setup 

 
The simulation was implemented using MATLAB. The 

parameters used for our simulation were total  samples (N) 
of 1,000, SNR range from -30 dB to 5 dB, and three 
secondary users. For deriving a double adaptive threshold, we 
used the following parameters: Pf  = 0.1, noise uncertainty 
factor (𝜌𝜌) = 1.05, dynamic threshold factor (𝜌𝜌′) = 1.09, and 
QPSK modulation in the AWGN channel.  

The performance results of our proposed scheme were 
evaluated and compared with other schemes that have a 
different number of thresholds. These are the CFAR (single 
threshold) scheme, double adaptive thresholds scheme, and 
three thresholds scheme. We applied the AND rule and the 
OR rule as the decision rules in the fusion center. The AND 
rule decides that a signal is present if all users have detected 
a signal [16]. The cooperative probability of detection 
(𝑄𝑄𝑑𝑑) and the cooperative probability false alarm 
(𝑄𝑄𝑓𝑓) cooperative sensing based for the AND rule can be 
expressed as 

𝑄𝑄𝑑𝑑  (𝑀𝑀) = �(𝑃𝑃𝑑𝑑,𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 ,              (15) 

𝑄𝑄𝑓𝑓  (𝑀𝑀) = �(𝑃𝑃𝑓𝑓,𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 .              (16) 

In the opposite way, if at least one of the secondary users 
decides that a primary user signal is present at the local 
decision, the fusion center decides whether a primary 
user is present. This fusion rule is known as the OR rule 
[16]. The cooperative probability of detection (𝑄𝑄𝑑𝑑) and the 
cooperative probability false alarm (𝑄𝑄𝑓𝑓) for the OR rule can 
be expressed as 

𝑄𝑄𝑑𝑑  (𝑀𝑀) = 1 −�(1 − 𝑃𝑃𝑑𝑑,𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 ,          (17) 

𝑄𝑄𝑓𝑓  (𝑀𝑀) = 1 −�(1 − 𝑃𝑃𝑓𝑓,𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 .          (18) 

where M is the number of secondary users subscribing 
cooperation, and 𝑃𝑃𝑑𝑑,𝑖𝑖 and 𝑃𝑃𝑓𝑓,𝑖𝑖 are the probability of detec-
tion and probability of false alarm for each secondary user, 
respectively. 

 
B. Results and Analysis  

 
Fig. 5 shows a comparison of the cooperative detection 

probability as a function of the SNR value. As the SNR 
value decreases in the local node, the cooperative probability 
of detection (Qd) also decreases dramatically. Moreover, the 
result shows that by applying fuzzy logic at the node level, 
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the sensing accuracy can be greatly improved compared to 
other schemes. Using fuzzy logic in a local node also helps 
to mitigate sensing failure in the confused region. When 
SNR = -20 dB, our scheme can outperform the three 
thresholds cooperative scheme by 21%. 

Fig. 6 shows a comparison of the cooperative false alarm 
probability when the signal is noise only or the primary user 
is almost absent. Spectrum sensing is performed with a 
variant of the SNR value or a variant in the noise power. As 
shown in Fig. 6, the cooperative probability of a false alarm 
(Qf) starts to increase when SNR = 0 dB. This is particularly 
likely in cases where a CFAR scheme with OR rules is Qf = 
0.3, while the other schemes have a lower value than 0.1. At 
SNR > 0 dB, all of the schemes have a high false alarm rate 
because the energy detection scheme cannot distinguish the 
primary signal from the noise. However, according to the 
spectrum sensing requirement for the probability of a false 
alarm [17], the maximum of the false alarm value is 0.1. Thus, 
our proposed scheme meets the spectrum sensing requirement 
because when the thresholds are derived using Pf = 0.1 and 
SNR = 0 dB, the cooperative false alarm probability is still 
lower than 0.1. 

 
 

 
Fig. 5. Comparison of cooperative detection probability as a function of 
the SNR values when a primary user is present. 

 

 
Fig. 6. Comparison of cooperative FA probability as a function of the 
SNR values when a primary user is absent. 

 
Fig. 7. Comparison of cooperative detection probability as a function of 
𝑃𝑃𝑓𝑓 when a primary user is present. 

 

Fig. 8. Comparison of the time execution when a primary user is 
present. 
 
 

Fig. 7 shows a comparison of the cooperative detection 
probability (Qd) as a function of the probability of false 
alarm (Pf ). It is assumed that the SNR value is -20 dB, and 
Pf varies between 0.01 and 1. When Pf = 0.01, our scheme 
provides Qd = 1 whereas in other schemes Qd is lower than 
0.1. Therefore, our scheme does not produce any negative 
effects associated with changes in the probability of false 
alarm in determining the threshold. According to the 
spectrum sensing standard, the minimum requirement of 
probability detection is 0.9 [17]. Thus, when Pf varies 
between 0.01 and 1, our scheme successfully decides the 
true condition of the presence of a primary user with Qd = 1. 
This result was the best among all of the schemes that were 
considered. 

Fig. 8 shows a comparison of the executed time as a 
function of SNR when a primary user is present. The overall 
results of the average executed time for determining the 
channel status are below one second. When a secondary user 
faces worse SNR, the proposed scheme can enhance the 
accuracy of detection better than the other schemes. 
However, when SNR = -30 dB to -15 dB, the proposed 
scheme requires around three seconds for time execution. 
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This indicates that in order to achieve high accuracy, 
execution time must be slightly sacrificed. 
 
 
V. CONCLUSION 
 

The aim of this paper is to enhance the performance of 
spectrum sensing schemes, particularly energy detection. 
Although our energy detection scheme is simple to implement, 
it is not robust at low SNR conditions, and the performance 
of the energy detection is limited by noise uncertainty. 
Furthermore, multipath fading, shadowing, and the hidden 
node problem degrade the performance of single-user 
spectrum-sensing techniques. Thus, a fuzzy logic scheme is 
applied to enhance the performance of energy detection based 
on double thresholds as well as to achieve high flexibility for 
decision making. By using a fuzzy logic scheme, vagueness 
and unclear decisions are mitigated in a confused region. 
Based on the simulation results, our scheme successfully 
enhances the performance of energy detection at low SNR 
and reduces the effect of noise uncertainty.  
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